Metal Additive Manufacturing


Book Description

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.




Additive Manufacturing of Metals


Book Description

This book is a technical introduction to additive manufacturing (AM) with a focus on powder bed fusion and metals. It provides the theory and industry-based practices to design, make, and test metal components via AM. After outlining the methods and materials of powder bed methods, the book explains the workings and physical limitations of electron beam and laser melt technologies in manufacturing parts, using a variety of metal powders. In this context, the physics of powder melting is described, as well as the effects of temperature variables on the properties of a part. The critical elements of how powder feedstock is chosen and formulated are explained. Processing methods are described using original design and engineering parameters developed by the author. Information is provided on current test methods of metals produced by AM, as well as how to carry out quality control, monitor reliability, and implement safety standards. For process design, a section is devoted to modeling.Each chapter includes a set of problems for students and practitioners that reflect metals' fabrication in industry.







Additive Manufacturing of Metals


Book Description

This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.




Additive Manufacturing of Metals: The Technology, Materials, Design and Production


Book Description

This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners




Additive Manufacturing of Metal Alloys 1


Book Description

Over the last decade or so, additive manufacturing has revolutionized design and manufacturing methods by allowing more freedom in design and functionalities unattainable with conventional processes. This has generated extraordinarily high interest in both industrial and academic communities. Additive Manufacturing of Metal Alloys 1 puts forward a state of the art of additive manufacturing and its different processes, from metallic raw materials (in the form of powder or wire) to their properties after elaboration. It analyzes the physics and the modelling of existing AM processes as well as future elaboration processes. Using a balanced approach encapsulating basic notions and more advanced aspects for each theme, this book acts as a metal additive manufacturing textbook, as useful to professionals in the field as to the general public.




Additive Manufacturing (AM) of Metallic Alloys


Book Description

The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on "Additive Manufacturing (AM) of Metallic Alloys" contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM.




Inkjet Based 3D Additive Manufacturing of Metals


Book Description

Additive Manufacturing (AM) is a highly promising rapid manufacturing process. Based on incremental layer-upon-layer deposits, three dimensional components of high geometrical complexity can be produced; applications ranging from aerospace and automotive to biomedical industries. Laser, electron beam and wire-based techniques are reviewed. Particular emphasis is placed on 3D inkjet printing of metals, which is reviewed here in great depth and for the first time. This is an ambient temperature technology which offers some unique advantages for printing metals and alloys, as well as composite and functionally graded materials. Material selection guidelines are presented and the various deposition techniques and post-printing treatments are discussed; together with the resulting properties of the printed components: Density, shrinkage, resolution and surface roughness, porosity-related and mechanical properties, as well as biological properties The various metal printing techniques are compared with each other and case studies are referred to. Additive Manufacturing, Inkjet Printing of Metals, 3D Printed Components, Laser Melting, Laser Sintering, Laser Powder Deposition, Material Selection Guidelines for Inkjet Printing of Metals, Biological Properties of AM Metals, Surface Properties of AM Metals, Porosity of AM Metals, Shrinkage of AM Metals, Mechanical of Properties of AM Metals, Density of Properties of AM Metals




Science, Technology and Applications of Metals in Additive Manufacturing


Book Description

Science, Technology and Applications of Metal Additive Manufacturing provides a holistic picture of metal Additive Manufacturing (AM) that encompasses the science, technology and applications for the use of metal AM. Users will find design aspects, various metal AM technologies commercially available, a focus on merits and demerits, implications for qualification and certification, applications, cost modeling of AM, and future directions. This book serves as an educational guide, providing a holistic picture of metal AM that encompasses science, technology and applications for the real-life use of metal AM. - Includes an overall understanding of metal additive manufacturing, Including steps involved (process flow) - Discusses available commercial metal AM technologies and their relative strengths and weaknesses - Reviews the process of qualification of AM parts, various applications, cost modeling, and the future directions of metal AM




Additive Manufacturing of Emerging Materials


Book Description

This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering.