Polymer Adhesion, Friction, and Lubrication


Book Description

Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.




Ice Adhesion


Book Description

This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.




Fundamentals of Friction


Book Description

Fundamentals of Friction, unlike many books on tribology, is devoted to one specific topic: friction. After introductory chapters on scientific and engineering perspectives, the next section contains the necessary background within the areas of contact mechanics, surfaces and adhesion. Then on to fracture, deformation and interface shear, from the macroscopic behavior of materials in frictional contact to microscopic models of uniform and granular interfaces. Lubrication by solids, liquids and gases is presented next, from classical flow properties to the reorganization of monolayers of molecules under normal and shear stresses. A section on new approaches at the nano- and atomic scales covers the physics and chemistry of interfaces, an array of visually exciting simulations, using molecular dynamics, of solids and liquids in sliding contact, and related AFM/STM studies. Following a section on machines and measurements, the final chapter discusses future issues in friction.




Handbook of Contact Mechanics


Book Description

This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.




Contact Mechanics and Friction


Book Description

This application-oriented book introduces readers to the associations and relationships between contact mechanics and friction, providing them with a deeper understanding of tribology. It addresses the related phenomena of contacts, adhesion, capillary forces, friction, lubrication, and wear from a consistent point of view. The author presents (1) methods for rough estimates of tribological quantities, (2) simple and general methods for analytical calculations, and (3) the crossover into numerical simulation methods, the goal being to convey a consistent view of tribological processes at various scales of magnitude (from nanotribology to earthquake research). The book also explores the system dynamic aspects of tribological systems, such as squeal and its suppression, as well as other types of instabilities and spatial patterns. It includes problems and worked-out solutions for the respective chapters, giving readers ample opportunity to apply the theory to practical situations and to deepen their understanding of the material discussed. The second edition has been extended with a more detailed exposition of elastohydrodynamic lubrication, an updated chapter on numerical simulation methods in contact mechanics, a new section on fretting in the chapter on wear, as well as numerous new exercises and examples, which help to make the book an excellent reference guide.




Polymer Adhesion, Friction, and Lubrication


Book Description

Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.




Sliding Friction


Book Description

Sliding friction is one of the oldest problems in physics and certainly one of the most important from a practical point of view. The ability to produce durable low-friction surfaces and lubricant fluids has become an important factor in the miniaturization of moving components in many technological devices, e.g., magnetic storage, recording systems, miniature motors and many aerospace components. This book will be useful to physicists, chemists, materials scientists, and engineers who want to understand sliding friction. The book (or parts of it) could also form the basis for a modern undergraduate or graduate course on tribology.




Wet Granular Matter


Book Description

This is a monograph written for the young and advanced researcher entering the field of wet granular matter, and is keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis.