Advanced Approaches, Business Models, and Novel Techniques for Management and Control of Smart Grids


Book Description

The current power system should be renovated to fulfill social and industrial requests and economic advances. Hence, providing economic, green, and sustainable energy are key goals of advanced societies. In order to meet these goals, recent features of smart grid technologies need to have the potential to improve reliability, flexibility, efficiency, and resiliency. This book aims to address the mentioned challenges by introducing advanced approaches, business models, and novel techniques for the management and control of future smart grids.




Smart Energy Grid Engineering


Book Description

Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids




Future Urban Energy System for Buildings


Book Description

This book investigates three main characteristics of future urban energy system for buildings, including flexibility, resilience and optimization. It explores the energy flexibility by considering renewable energy integration with buildings, sector coupling, and energy trading in the local energy market. Energy resilience is addressed from aspects of future climate change, pandemic crisis, and operational uncertainties. Approaches for system design, dynamic pricing and advanced control are discussed for the optimization of urban energy system. Knowledge from this book contributes to the effective means in future urban energy paradigm to closely integrate multiple energy systems (i.e., distribution, mobility, production and storage) with different energy carriers (i.e., heat, electricity) in an optimal manner for energy use. It would facilitate the envision of next-generation urban energy systems, towards sustainability, resilience and prosperity. This book targets at a broad readership with specific experience and knowledge in energy system, transport, built environment and urban planning. As such, it will appeal to researchers, graduate students, engineers, consultants, urban scientists, investors and policymakers, with interests in energy flexibility, building/city resilience and climate neutrality.




Advanced Communication and Control Methods for Future Smartgrids


Book Description

Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid.




Modeling, Analysis, and Control of Smart Energy Systems


Book Description

The increasing demand for cleaner and more intelligent energy solutions poses a challenge that resonates across academic, engineering, and policymaking spheres. The complexity of integrating renewable energy sources, energy storage solutions, and advanced communication technologies demands a comprehensive understanding, rigorous analysis, and innovative control strategies. The academic community, in particular, seeks a guiding light through this intricate maze of evolving energy dynamics. Modeling, Analysis, and Control of Smart Energy Systems is a groundbreaking publication that offers more than theoretical exploration; it is a roadmap equipped with the knowledge and tools required to shape the future of energy systems. From laying conceptual foundations to unraveling real-world case studies, the book seamlessly bridges the gap between theory and application. Its comprehensive coverage of mathematical modeling, dynamic system analysis, intelligent control strategies, and the integration of renewable energy sources positions it as an authoritative reference for researchers, engineers, and policymakers alike.




Distributed Economic Operation in Smart Grid: Model-Based and Model-Free Perspectives


Book Description

This book aims to work out the distributed economic operation in smart grids in a systematic way, which ranges from model-based to model-free perspectives. The main contributions of this book can be summarized into three folds. First, we investigate the fundamental economic operation problems in smart grids from model-based perspective. Specifically, these problems can be modeled as deterministic optimization models, and we propose some distributed optimization algorithms by integrating the multi-agent consensus theory and optimization techniques to achieve the distributed coordination of various generation units and loads. Second, due to the randomness of the large-scale renewable energies and the flexibility of the loads, we further address these economic operation problems from a model-free perspective, and we propose learning-based approaches to address the uncertainty and randomness. At last, we extend the idea of model-based and model-free algorithms to plug-in electric vehicles (PEVs) charging/discharging scheduling problem, the key challenge of which involves multiple objectives simultaneously while the behavior of PEVs and the electricity price are intrinsically random. This book presents several recent theoretical findings on distributed economic operation in smart grids from model-based and model-free perspectives. By systematically integrating novel ideas, fresh insights, and rigorous results, this book provides a base for further theoretical research on distributed economic operation in smart grids. It can be a reference for graduates and researchers to study the operation and management in smart grids. Some prerequisites for reading this book include optimization theory, matrix theory, game theory, reinforcement learning, etc.




Smart Grid Systems


Book Description

Electric power systems are being transformed from older grid systems to smart grids across the globe. The goals of this transition are to address today’s electric power issues, which include reducing carbon footprints, finding alternate sources of decaying fossil fuels, eradicating losses that occur in the current available systems, and introducing the latest information and communication technologies (ICT) for electric grids. The development of smart grid technology is advancing dramatically along with and in reaction to the continued growth of renewable energy technologies (especially wind and solar power), the growing popularity of electric vehicles, and the continuing huge demand for electricity. Smart Grid Systems: Modeling and Control advances the basic understanding of smart grids and focuses on recent technological advancements in the field. This book provides a comprehensive discussion from a number of experts and practitioners and describes the challenges and the future scope of the technologies related to smart grid. Key features: provides an overview of the smart grid, with its needs, benefits, challenges, existing structure, and possible future technologies discusses solar photovoltaic (PV) system modeling and control along with battery storage, an integral part of smart grids discusses control strategies for renewable energy systems, including solar PV, wind, and hybrid systems describes the inverter topologies adopted for integrating renewable power covers the basics of the energy storage system and the need for micro grids describes forecast techniques for renewable energy systems presents the basics and structure of the energy management system in smart grids, including advanced metering, various communication protocols, and the cyber security challenges explores electric vehicle technology and its interaction with smart grids




Advanced Smart Grid Functionalities Based on PowerFactory


Book Description

This book consolidates some of the most promising advanced smart grid functionalities and provides a comprehensive set of guidelines for their implementation/evaluation using DIgSILENT Power Factory. It includes specific aspects of modeling, simulation and analysis, for example wide-area monitoring, visualization and control, dynamic capability rating, real-time load measurement and management, interfaces and co-simulation for modeling and simulation of hybrid systems. It also presents key advanced features of modeling and automation of calculations using PowerFactory, such as the use of domain-specific (DSL) and DIgSILENT Programming (DPL) languages, and utilizes a variety of methodologies including theoretical explanations, practical examples and guidelines. Providing a concise compilation of significant outcomes by experienced users and developers of this program, it is a valuable resource for postgraduate students and engineers working in power-system operation and planning.




Methods and Concepts for Designing and Validating Smart Grid Systems


Book Description

Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.




IoT for Smart Grids


Book Description

This book explains the fundamentals of control theory for Internet of Things (IoT) systems and smart grids and its applications. It discusses the challenges imposed by large-scale systems, and describes the current and future trends and challenges in decision-making for IoT in detail, showing the ongoing industrial and academic research in the field of smart grid domain applications. It presents step-by-step design guidelines for the modeling, design, customisation and calibration of IoT systems applied to smart grids, in which the challenges increase with each system’s increasing complexity. It also provides solutions and detailed examples to demonstrate how to use the techniques to overcome these challenges, as well as other problems related to decision-making for successful implementation. Further, it anaylses the features of decision-making, such as low-complexity and fault-tolerance, and uses open-source and publicly available software tools to show readers how they can design, implement and customise their own system control instantiations. This book is a valuable resource for power engineers and researchers, as it addresses the analysis and design of flexible decision-making mechanisms for smart grids. It is also of interest to students on courses related to control of large-scale systems, since it covers the use of state-of-the-art technology with examples and solutions in every chapter. And last but not least, it offers practical advice for professionals working with smart grids.