Continuous Manufacturing for the Modernization of Pharmaceutical Production


Book Description

On July 30-31, 2018, the National Academies of Sciences, Engineering, and Medicine held a workshop titled Continuous Manufacturing for the Modernization of Pharmaceutical Production. This workshop discussed the business and regulatory concerns associated with adopting continuous manufacturing techniques to produce biologics such as enzymes, monoclonal antibodies, and vaccines. The participants also discussed specific challenges for integration across the manufacturing system, including upstream and downstream processes, analytical techniques, and drug product development. The workshop addressed these challenges broadly across the biologics domain but focused particularly on drug categories of greatest FDA and industrial interest such as monoclonal antibodies and vaccines. This publication summarizes the presentations and discussions from the workshop.




Advanced Biologic Drugs and Manufacturing Process


Book Description

Advanced Biologic Drugs and Manufacturing Process explains biologic drugs, their pharmaceutical charters, and their significance in curing life-threatening chronic diseases. It also provides the latest information on the use of biological drugs for the treatment of numerous diseases and conditions and their most advanced therapies available, including how biologics have impacted cancer therapy, delayed or reversed the course of immune-related conditions, and changed the lives of those with rare chronic diseases. In addition, the book explains how immunotherapy is used for the treatment of diseases by activating or suppressing the immune system.Scientists working on the front lines in the biotechnology industry are provided with an overview on stable production processes and how to monitor the value chain transfer process of biologic drug for better return, in terms of profit. The book also helps researchers and academics on how to develop and update protocols related to testing, quality control, and quality assurance to obtain highly purified biopharmaceuticals or vaccines. - Gives insights into the conceptual strategic drive for manufacturing innovative, biologically derived therapeutic compounds to launch for commercial purposes - Focuses on how to execute biopharmaceutical portfolio trends to bring sustainable manufacturing processes per the guidelines of international regulatory acts - Highlights the emerging trends in medical sciences on tissue engineering, regenerative medicine, personalized medicines, and various innovative technique on immunotherapy to fight against life-threatening diseases




Rare Diseases and Orphan Products


Book Description

Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing


Book Description

Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing Explore new trends in continuous biomanufacturing with contributions from leading practitioners in the field With the increasingly widespread acceptance and investment in the ??technology, the last decade has demonstrated the utility of continuous ??processing in the pharmaceutical industry. In Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing, distinguished biotechnologist Dr. Ganapathy Subramanian delivers a comprehensive exploration of the potential of the continuous processing of biological products and discussions of future directions in advancing continuous processing to meet new challenges and demands in the manufacture of therapeutic products. A stand-alone follow-up to the editor’s Continuous Biomanufacturing: Innovative Technologies and Methods published in 2017, this new edited volume focuses on critical aspects of process intensification, process control, and the digital transformation of biopharmaceutical processes. In addition to topics like the use of multivariant data analysis, regulatory concerns, and automation processes, the book also includes: Thorough introductions to capacitance sensors to control feeding strategies and the continuous production of viral vaccines Comprehensive explorations of strategies for the continuous upstream processing of induced microbial systems Practical discussions of preparative hydrophobic interaction chromatography and the design of modern protein-A-resins for continuous biomanufacturing In-depth examinations of bioprocess intensification approaches and the benefits of single use for process intensification Perfect for biotechnologists, bioengineers, pharmaceutical engineers, and process engineers, Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing is also an indispensable resource for chemical engineers seeking a one-stop reference on continuous biomanufacturing.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.




Pharmaceutical Biotechnology


Book Description

Pharmaceutical Biotechnology offers students taking Pharmacy and related Medical and Pharmaceutical courses a comprehensive introduction to the fast-moving area of biopharmaceuticals. With a particular focus on the subject taken from a pharmaceutical perspective, initial chapters offer a broad introduction to protein science and recombinant DNA technology- key areas that underpin the whole subject. Subsequent chapters focus upon the development, production and analysis of these substances. Finally the book moves on to explore the science, biotechnology and medical applications of specific biotech products categories. These include not only protein-based substances but also nucleic acid and cell-based products. introduces essential principles underlining modern biotechnology- recombinant DNA technology and protein science an invaluable introduction to this fast-moving subject aimed specifically at pharmacy and medical students includes specific ‘product category chapters’ focusing on the pharmaceutical, medical and therapeutic properties of numerous biopharmaceutical products. entire chapter devoted to the principles of genetic engineering and how these drugs are developed. includes numerous relevant case studies to enhance student understanding no prior knowledge of protein structure is assumed




Animal Cell Biotechnology


Book Description

This book introduces fundamental principles and practical application of techniques used in the scalable production of biopharmaceuticals with animal cell cultures. A broad spectrum of subjects relevant to biologics production and manufacturing are reviewed, including the generation of robust cell lines, a survey of functional genomics for a better understanding of cell lines and processes, as well as advances in regulatory compliant upstream and downstream development. The book is an essential reference for all those interested in translational animal cell-based pharmaceutical biotechnology.




Monoclonal Antibody Production


Book Description

The American Anti-Vivisection Society (AAVS) petitioned the National Institutes of Health (NIH) on April 23, 1997, to prohibit the use of animals in the production of mAb. On September 18, 1997, NIH declined to prohibit the use of mice in mAb production, stating that "the ascites method of mAb production is scientifically appropriate for some research projects and cannot be replaced." On March 26, 1998, AAVS submitted a second petition, stating that "NIH failed to provide valid scientific reasons for not supporting a proposed ban." The office of the NIH director asked the National Research Council to conduct a study of methods of producing mAb. In response to that request, the Research Council appointed the Committee on Methods of Producing Monoclonal Antibodies, to act on behalf of the Institute for Laboratory Animal Research of the Commission on Life Sciences, to conduct the study. The 11 expert members of the committee had extensive experience in biomedical research, laboratory animal medicine, animal welfare, pain research, and patient advocacy (Appendix B). The committee was asked to determine whether there was a scientific necessity for the mouse ascites method; if so, whether the method caused pain or distress; and, if so, what could be done to minimize the pain or distress. The committee was also asked to comment on available in vitro methods; to suggest what acceptable scientific rationale, if any, there was for using the mouse ascites method; and to identify regulatory requirements for the continued use of the mouse ascites method. The committee held an open data-gathering meeting during which its members summarized data bearing on those questions. A 1-day workshop (Appendix A) was attended by 34 participants, 14 of whom made formal presentations. A second meeting was held to finalize the report. The present report was written on the basis of information in the literature and information presented at the meeting and the workshop.




Modern Methods of Clinical Investigation


Book Description

The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.