Advanced Computational Applications of Geometric Algebra
Author : David William Honorio Araujo Da Silva
Publisher : Springer Nature
Page : 263 pages
File Size : 44,4 MB
Release :
Category :
ISBN : 3031559851
Author : David William Honorio Araujo Da Silva
Publisher : Springer Nature
Page : 263 pages
File Size : 44,4 MB
Release :
Category :
ISBN : 3031559851
Author : Eduardo Bayro-Corrochano
Publisher : Springer Science & Business Media
Page : 527 pages
File Size : 47,10 MB
Release : 2010-05-19
Category : Computers
ISBN : 1849961085
This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.
Author : Leo Dorst
Publisher : Springer Science & Business Media
Page : 479 pages
File Size : 43,26 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 146120089X
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
Author : Leo Dorst
Publisher : Elsevier
Page : 664 pages
File Size : 34,93 MB
Release : 2010-07-26
Category : Juvenile Nonfiction
ISBN : 0080553109
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Author : David Hestenes
Publisher : Springer Science & Business Media
Page : 340 pages
File Size : 49,18 MB
Release : 1984
Category : Mathematics
ISBN : 9789027725615
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Author : Eduardo Bayro-Corrochano
Publisher : Springer Nature
Page : 609 pages
File Size : 34,20 MB
Release : 2020-06-19
Category : Mathematics
ISBN : 3030349780
This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.
Author : Christian Perwass
Publisher : Springer Science & Business Media
Page : 389 pages
File Size : 42,79 MB
Release : 2009-02-11
Category : Computers
ISBN : 3540890688
The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.
Author : Jean Gallier
Publisher : Springer Science & Business Media
Page : 584 pages
File Size : 21,1 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461301378
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Author : Kenichi Kanatani
Publisher : CRC Press
Page : 207 pages
File Size : 39,26 MB
Release : 2015-04-06
Category : Computers
ISBN : 1482259516
Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics introduces geometric algebra with an emphasis on the background mathematics of Hamilton, Grassmann, and Clifford. It shows how to describe and compute geometry for 3D modeling applications in computer graphics and computer vision.Unlike similar texts
Author : George Stacey Staples
Publisher : World Scientific
Page : 378 pages
File Size : 24,29 MB
Release : 2019-09-24
Category : Mathematics
ISBN : 9811202591
Clifford algebras have many well-known applications in physics, engineering, and computer graphics. Zeon algebras are subalgebras of Clifford algebras whose combinatorial properties lend them to graph-theoretic applications such as enumerating minimal cost paths in dynamic networks. This book provides a foundational working knowledge of zeon algebras, their properties, and their potential applications in an increasingly technological world.As a graduate-level or advanced undergraduate-level mathematics textbook, it is suitable for self-study by researchers interested in new approaches to existing combinatorial problems and applications (wireless networks, Boolean satisfiability, coding theory, etc.).As the first textbook to explore algebraic and combinatorial properties of zeon algebras in depth, it is suitable for interdisciplinary study in analysis, algebra, and combinatorics. The material is complemented by the CliffMath software package for Mathematica, which is freely available through the book's webpage.