Advanced Computational Methods and Experiments in Heat Transfer XII


Book Description

Containing papers presented at the twelfth in a series of successful international conferences on Advanced Computational Methods and Experiments in Heat Transfer, this book covers the latest developments in this important field. Heat Transfer plays a major role in emerging application fields such as sustainable development and the reduction of greenhouse gases, as well as micro- and nano-scale structures and bio-engineering. Typical applications include heat exchangers, gas turbine cooling, turbulent combustion and fires, electronics cooling, melting and solidification. The nature of heat transfer problems is complex, involving many different simultaneously occurring mechanisms (e.g., heat conduction, convection, turbulence, thermal radiation. phase change). Their complexity makes it imperative that we develop reliable and accurate computational methods to replace or complement expensive and time-consuming experimental trial and error work. Tremendous advances have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and more powerful computers capable of performing efficient and rapid calculations. Nevertheless, to further progress, it will also be necessary to develop theoretical and predictive computational procedures--both basic and innovative--and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. The book includes such topics as: Heat Transfer in Energy Producing Devices; Heat Transfer Enhancement; Heat Transfer Problems; Natural and Forced Convection and Radiation; Multiphase Flow Heat Transfer; Modelling and Experiments.




Advanced Computational Methods and Experiments in Heat Transfer XI


Book Description

.".. Eleventh International Conference on Advanced Computational Methods and Experimental Measurements in Heat Transfer and Mass Transfer held in Tallinn, Estonia in 2010"--Pref.




Advanced Computational Methods and Experiments in Heat Transfer X


Book Description

In engineering design and development, reliable and accurate computational methods are requested to replace or complement expensive and time consuming experimental trial and error work. Tremendous advancements have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and computer developments to achieve efficient and rapid calculations. Nevertheless, to further progress in computational methods will require developments in theoretical and predictive procedures – both basic and innovative – and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. This book contains the edited versions of the papers presented at the Tenth International Conference on Advanced Computational Methods and Experimental Measurements in Heat Transfer and Mass Transfer held in Maribor, Slovenia in July 2008. The objective of this conference series is to provide a forum for presentation and discussion of advanced topics, new approaches and application of advanced computational methods and experimental measurements to heat and mass transfer problems. The contributed papers are grouped in the following appropriate sections to provide better access for readers: Natural and forced convection; Heat exchangers; Advances in computational methods; Heat recovery; Heat transfer; Modelling and experiments.




Introduction to Heat Transfer


Book Description

Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms




Advanced Computational Methods in Heat Transfer IX


Book Description

Heat Transfer topics are commonly of a very complex nature. Often different mechanisms like heat conduction, convection, thermal radiation, and non-linear phenomena, such as temperature-dependent thermophysical properties, and phase changes occur simultaneously. New developments in numerical solution methods of partial differential equations and access to high-speed, efficient and cheap computers have led to dramatic advances during recent years. This book publishes papers from the Ninth International Conference on Advanced Computational Methods and Experimental Measurements in Heat and Mass Transfer, exploring new approaches to the numerical solutions of heat and mass transfer problems and their experimental measurement. Papers encompass a number of topics such as: Diffusion and Convection; Conduction; Natural and Forced Convection; Heat and Mass Transfer Interaction; Casting, Welding, Forging and other Processes; Heat Exchanges; Atmospheric Studies; Advances in Computational Methods; Modelling and Experiments; Micro and Nano Scale Heat and Mass Transfer; Energy Systems; Energy Balance Studies; Thermal Material Characterization; Applications in Biology; Applications in Ecological Buildings; Case Studies.




CFD Techniques and Energy Applications


Book Description

This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in energy applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the energy applications. Also, they offer the fundamental knowledge for using CFD in energy applications through new technical approaches. Besides, they describe the CFD process steps and provide benefits and issues for using CFD analysis in understanding the flow complicated phenomena and its use in the design process. The best practices for reducing errors and uncertainties in the CFD analysis are further described. The book reveals not only the recent advances and future research trends of CFD Techniques but also provides the reader with valuable information about energy applications. It aims to provide the readers, such as engineers and PhD students, with the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can take advantage from the information of the book’s different chapters. ​




Cold Inflow-Free Solar Chimney


Book Description

This book highlights the design of a new type of solar chimney that has lower height and bigger diameter, and discusses its applications. The bigger diameter chimneys are introduced showing cold inflow phenomena that significantly reduced the performance of solar chimney. The cold inflow-free operation of solar chimneys restores the draft losses and enhances the performance of the solar chimneys. Numerical and experimental investigation results will be presented to highlight the performance of cold inflow-free solar chimney performance. In addition, this book covers the important basic design parameters that affect the design of solar chimney for different applications, mainly, solar chimney-assisted ventilation for passive cooling and power generation system.




Developments in Sustainable Chemical and Bioprocess Technology


Book Description

Environmental sustainability and development is of critical importance. Technological advances in the production of new energy sources are making their way into our lives in more and more depth every day. However, there is an urgent need to address the technological challenges and advancement of the various chemical and bio-processes to maintain the dynamic sustainability of our energy needs. Toward that end, an attempt is being made to look at recent advances, key issues still faced and where possible, offer suggestions on alternative technologies to optimize sustainable processes. Still considered a new area of science, energy sources themselves are still being 'discovered'...meaning, what is financially viable in the current marketplace is changing. For example, energy from plants has not been financially viable in the past because of the high cost of growing, harvesting, breaking down cell walls, disposal of waste products, etc. Materials used to derive energy from sustainable resources is changing, making previously high-cost processes more efficient. It is crucial that the industry as a while works in tandem to develop crops that new technological advances make financially feasible. This book will cover recent advances in the chemicals, bioprocesses and other materials used in growing and extracting energy from sustainable products. Membrane/cell wall digestion issues will also be covered as well as recovering mamixal amounts of energy from sources to limit waste. Finally a section on safety and control will be presented with has been poorly covered in other publications. ​







Computational Methods and Experimental Measurements XV


Book Description

Containing edited versions of most of the papers presented at the Fifteenth International Conference on Computational Methods and Experimental Measurements, this book reviews the latest work on these two approaches, and the interaction between them.