Advanced Materials Science and Engineering of Carbon


Book Description

Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.




An Introduction to Materials Engineering and Science for Chemical and Materials Engineers


Book Description

An Introduction to Materials Engineering and Science for Chemical and Materials Engineers provides a solid background in materials engineering and science for chemical and materials engineering students. This book: Organizes topics on two levels; by engineering subject area and by materials class. Incorporates instructional objectives, active-learning principles, design-oriented problems, and web-based information and visualization to provide a unique educational experience for the student. Provides a foundation for understanding the structure and properties of materials such as ceramics/glass, polymers, composites, bio-materials, as well as metals and alloys. Takes an integrated approach to the subject, rather than a "metals first" approach.




Materials Science and Engineering


Book Description

Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.




Materials Science and Engineering of Carbon


Book Description

Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. - Focuses on characterization techniques for carbon materials - Authored by experts who are considered specialists in their respective techniques - Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials




Functional Properties of Advanced Engineering Materials and Biomolecules


Book Description

This book shows how a small toolbox of experimental techniques, physical chemistry concepts as well as quantum/classical mechanics and statistical methods can be used to understand, explain and even predict extraordinary applications of these advanced engineering materials and biomolecules. It highlights how improving the material foresight by design, including the fundamental understanding of their physical and chemical properties, can provide new technological levels in the future.




Processing And Fabrication Of Advanced Materials Viii


Book Description

This volume contains the technical papers presented at the international symposium entitled “Processing and Fabrication of Advanced Materials VIII”, held in Singapore in 1999. This was the eighth in a series of symposia bringing together engineers and researchers from industry, academia and national laboratories, working on aspects related to the processing, fabrication and characterization of advanced materials, to present and discuss their latest findings. The proceedings also contain technical papers presented at two special symposia on biomaterials and magnesium technology.




Advanced Surface Engineering Materials


Book Description

Advanced surfaces enriches the high-throughput engineering of physical and chemical phenomenon in relatin to electrical, magnetic, electronics, thermal and optical controls, as well as large surface areas, protective coatings against water loss and excessive gas exchange. A more sophisticated example could be a highly selective surface permeability allowing passive diffusion and selective transport of molecules in the water or gases. The smart surface technology provides an interlayer model which prevents the entry of substances without affecting the properties of neighboring layers. A number of methods have been developed for coatings, which are essential building blocks for the top-down and/or bottom-up design of numerous functional materials. Advanced Surface Engineering Materials offers a detailed up-to-date review chapters on the functional coatings and adhesives, engineering of nanosurfaces, high-tech surface, characterization and new applications. The 13 chapters in this book are divided into 3 parts (Functional coatings and adhesives; Engineering of nanosurfaces; High-tech surface, characterization and new applications) and are all written by worldwide subject matter specialists. The book is written for readers from diverse backgrounds across chemistry, physics, materials science and engineering, medical science, environmental, bio- and nano- technologies and biomedical engineering. It offers a comprehensive view of cutting-edge research on surface engineering materials and their technological importance.




The Handbook of Advanced Materials


Book Description

Written to educate readers about recent advances in the area of new materials used in making products. Materials and their properties usually limit the component designer. * Presents information about all of these advanced materials that enable products to be designed in a new way * Provides a cost effective way for the design engineer to become acquainted with new materials * The material expert benefits by being aware of the latest development in all these areas so he/she can focus on further improvements




Advanced Engineering Materials and Modeling


Book Description

The engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides - microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms




Mechanics of Advanced Materials


Book Description

The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc. The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.