Advanced Materials for Biomechanical Applications


Book Description

This book provides in-depth knowledge about cross rolling of biomedical alloys, cellulose, magnetic iron oxide nanoparticles, magnesium-based nanocomposites, titanium, titanium alloys, stainless steel, and improved biodegradable implants materials for biomechanical applications like joint replacements, bone plates, bone cement, artificial ligaments and tendons, dental implants for tooth fixation, and hip implants. It comprehensively covers advancements in materials including graphene-reinforced magnesium metal matrix, magnesium and its alloys, and 2D nanomaterials. The text discusses important topics including advanced materials for biomechanical applications, design, and analysis of stainless steel 316L for femur bone fracture healing, design and manufacturing of prosthetic dental implants, a biomechanical study of a low-cost prosthetic leg, and an energy harvesting mechanism for walking applications. The text will serve as a useful text for graduate students, academic researchers, and general practitioners in areas including materials science, manufacturing engineering, mechanical engineering, and biomechanical engineering.




Advanced Materials for Biomedical Applications


Book Description

The text discusses synthesis, processing, design, simulation and characterization of biomaterials for biomedical applications. It synergizes exploration related to various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling. It further presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. It will serve as an ideal reference text for senior undergraduate and graduate students, and academic researchers in fields including biomedical engineering, mechanical engineering, materials science, ergonomics, and human factors. The book: Employs a problem-solution approach, where, in each chapter, a specific biomedical engineering problem is raised and its numerical, and experimental solutions are presented Covers recent developments in biomaterials such as OPMF/KGG bio composites, PEEK-based biomaterials, PF/KGG biocomposites, oil palm mesocarp Fibre/KGG biocomposites, and polymeric resorbable materials for orthopedic, dentistry and shoulder arthroplasty applications Discusses mechanical performance and corrosive analysis of biomaterials for biomedical applications in detail Presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field Presents biodegradable polymers for various biomedical applications over the last decade owing to their non-corrosion in the body, biocompatibility and superior strength in growing state Synergizes exploration related to the various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling




Advanced Materials and Manufacturing Techniques for Biomedical Applications


Book Description

ADVANCED MATERIALS and MANUFACTURING TECHNIQUES for BIOMEDICAL APPLICATIONS The book provides essential knowledge for the synthesis of biomedical products, development, nanomaterial properties, fabrication processes, and design techniques for different applications, as well as process design and optimization. In origin, biomaterials can come from nature or be synthesized in the laboratory with a variety of approaches that use metals, polymers, ceramic, or composite materials. They are often used or adapted for various biomedical applications. Biomaterials are commonly used in scaffolds, orthopedic, wound healing, fracture fixation, surgical sutures, artificial organ developments, pins and screws to stabilize fractures, surgical mesh, breast implants, artificial ligaments and tendons, and drug delivery systems. The sixteen chapters in Advanced Materials and Manufacturing Techniques in Biomedical Applications cover the synthesis, processing, design, manufacturing, and characterization of advanced materials; self-healing, bioinspired, nature-resourced, nanobiomaterials for biomedical applications; and manufacturing techniques such as rapid prototyping, additive manufacturing, etc. Audience The book is for engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing techniques. It is also appropriate for upper-level undergraduate and graduate students.




Nanomanufacturing Techniques in Sustainable Healthcare Applications


Book Description

The text begins by discussing the processing and characterization of nano-manufactured resorbable bionanocomposites and presents the latest advances in carbon-based polymer nanocomposite materials for sensing applications. It further presents different characterization techniques such as scanning electron, transmission electron, atomic force microscopy, and powder X-ray diffraction for the identification of bionanocomposites. This book: • Introduces nano-manufactured processed composites for biomedical application, processing, and characterization of bionanocomposites. • Presents biobased nano-manufactured processed composites for imaging, tissue repairing, and drug-delivery applications. • Explains future trends of nano-manufactured composites in 3D bio-implants and fluorescent bioimaging. • Highlights the challenges and perspectives of polymeric nano-manufactured composites for biomedical applications. • Covers multifunctional nano-manufactured bio-composites, and advances in polymeric membranes for healthcare applications. It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of manufacturing engineering, biomedical engineering, materials science and engineering, mechanical engineering, and production engineering.




Laser-based Technologies for Sustainable Manufacturing


Book Description

This book provides scientific and technological insights on novel techniques of design and manufacturing using laser technologies. It showcases applications of laser micromachining in the biomedical industry, laser-based manufacturing processes in aerospace engineering, and high-precision laser-cutting in the home appliance sector. Features: Each chapter discusses a specific engineering problem and showcases its numerical, and experimental solution Provides scientific and technological insights on novel routes of design and manufacturing using laser technologies Synergizes exploration related to the various properties and functionalities through extensive theoretical and numerical modeling Highlights current issues, developments, and constraints in additive manufacturing Discusses applications of laser cutting machines in the manufacturing industry and laser micromachining for the biomedical industry The text discusses optical, and laser-based green manufacturing technologies and their application in diverse engineering fields including mechanical, electrical, biomedical, and computer. It further covers sustainability issues in laser-based manufacturing technologies and the development of laser-based ultra-precision manufacturing techniques. The text also discusses the use of artificial intelligence and machine learning in laser-based manufacturing techniques. It will serve as an ideal reference text for senior undergraduate, graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.




Magnesium Alloys for Biomedical Applications


Book Description

Magnesium alloys have enormous potential for use in biomedical implants. Magnesium Alloys for Biomedical Applications delves into recent advances and prospects for implementation and provides scientific insights into current issues posed by Mg alloy materials. It provides an overview of research on their mechanical and tribological characteristics, corrosion tendencies, and biological characteristics, with a particular emphasis on biomedical implants. Details the fundamentals of Mg alloys as well as necessary surface modifications of Mg alloys for biomedical use. Discusses emerging Mg alloys and their composites. Covers mechanical, tribological, and chemical properties, as well as fatigue and corrosion. Highlights emerging manufacturing methods and advancements in new alloy design, composite manufacturing, unique structure design, surface modification, and recyclability. Helps readers identify appropriate Mg-based materials for their applications and select optimal improvement methods. Summarizes current challenges and suggests a roadmap for future research. Aimed at researchers in materials and biomedical engineering, this book explores the many breakthroughs achieved with these materials and where the field should concentrate to ensure the development of safe and reliable Mg alloy-based implants.




Sustainable Smart Manufacturing Processes in Industry 4.0


Book Description

The text discusses both theoretical and technological aspects of the Industry 4.0–based manufacturing processes. It covers important topics such as additive manufacturing, laser-based manufacturing processes, electromagnetic welding and joining processes, green manufacturing processes, and friction welding processes. Illustrates sustainable manufacturing aspects in robotics and aerospace industries. Showcases additive manufacturing processes with a focus on innovation and automation. Covers environment-friendly manufacturing processes resulting in zero waste and conserves natural resources. Synergizes exploration related to the various properties and functionalities through extensive theoretical and experimental modeling. Discusses impact welding for joining of dissimilar materials. The text discusses the recent manufacturing techniques and methodologies such as impact welding for joining of dissimilar materials. It further covers techniques such as additive manufacturing and electromagnetic manu- facturing, resulting in minimum or negligible waste. The text elaborates important topics such as friction stir welding energy consumption analysis, and industry waste recycling for sustainable development. It will serve as an ideal reference text for senior undergraduate, graduate students, and researchers in the fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.




Biowaste and Biomass in Biofuel Applications


Book Description

This book reflects the new dimension of biofuel production from its introductory principles to the advancements from a future prospective. It summarizes the rationale for changes in liquid fuel utilization and the selection of new technologies to make biofuel cost-effective and move toward a carbon-neutral approach. It provides an evidence-based outline of how additives and nanotechnology chemically change biofuels' quality and effectiveness, including new and innovative approaches, such as nanomaterials and various nano-additives. Features: It provides an overview of biowaste as a sustainable source in the field of biofuel production It includes effective conversion parameters of the biowaste feedstocks and their classification It summarizes current research into the development and exploitation of new biofuel sources It discusses the improvement of pilot scale scalability, chemical processing, and design flow It presents relevant and realistic global explanations of biowaste management techniques for biofuels This book is aimed at senior undergraduate and graduate students, and researchers in bioprocessing, chemical engineering, and biotechnology.




Biomimicry Materials and Applications


Book Description

BIOMIMICRY MATERIALS AND APPLICATIONS Since the concept of biomimetics was first developed in 1950, the practical applications of biomimetic materials have created a revolution from biotechnology to medicine and most industrial domains, and are the future of commercial work in nearly all fields. Biomimetic materials are basically synthetic materials or man-made materials which can mimic or copy the properties of natural materials. Scientists have created a revolution by mimicking natural polymers through semi-synthetic or fully synthetic methods. There are different methods to mimic a material, such as copying form and shape, copying the process, and finally mimicking at an ecosystem level. This book comprises a detailed description of the materials used to synthesize and form biomimetic materials. It describes the materials in a way that will be far more convenient and easier to understand. The editors have compiled the book so that it can be used in all areas of research, and it shows the properties, preparations, and applications of biomimetic materials currently being used. Readers of this volume will find that: It introduces the synthesis and formation of biomimetic materials; Provides a thorough overview of many industrial applications, such as textiles, management of plant disease detection, and various applications of electroactive polymers; Presents ideas on sustainability and how biomimicry fits within that arena; Deliberates the importance of biomimicry in novel materials. Audience This is a useful guide for engineers, researchers, and students who work on the synthesis, properties, and applications of existing biomimetic materials in academia and industrial settings.




Advanced Manufacturing Processes


Book Description

The field of manufacturing science has evolved over the years with the introduction of non-traditional machining processes. This reference book introduces the latest trends in modeling and optimization of manufacturing processes. It comprehensively covers important topics including additive manufacturing at multi-scales, sustainable manufacturing, rapid manufacturing of metallic components using 3D printing, ultrasonic-assisted bone drilling for biomedical applications, micromachining, and laser-assisted machining. This book is useful to senior undergraduate and graduate students in the fields of mechanical engineering, industrial and production engineering, and aerospace engineering.