Advanced Engineering Mathematics
Author : Erwin Kreyszig
Publisher :
Page : pages
File Size : 27,46 MB
Release : 2019-01-03
Category :
ISBN : 9781119571094
Author : Erwin Kreyszig
Publisher :
Page : pages
File Size : 27,46 MB
Release : 2019-01-03
Category :
ISBN : 9781119571094
Author : Vladimir Vasilʹevich Mitin
Publisher : Wiley-Interscience
Page : 336 pages
File Size : 46,22 MB
Release : 2001-04-02
Category : Mathematics
ISBN :
A convenient single source for vital mathematical concepts, writtenby engineers and for engineers. Builds a strong foundation in modern applied mathematics forengineering students, and offers them a concise and comprehensivetreatment that summarizes and unifies their mathematical knowledgeusing a system focused on basic concepts rather than exhaustivetheorems and proofs. The authors provide several levels of explanation and exercisesinvolving increasing degrees of mathematical difficulty to recalland develop basic topics such as calculus, determinants, Gaussianelimination, differential equations, and functions of a complexvariable. They include an assortment of examples ranging fromsimple illustrations to highly involved problems as well as anumber of applications that demonstrate the concepts and methodsdiscussed throughout the book. This broad treatment also offers:*Key mathematical tools needed by engineers working incommunications, semiconductor device simulation, and control theory* Concise coverage of fundamental concepts such as sets, mappings,and linearity * Thorough discussion of topics such as distance,inner product, and orthogonality * Essentials of operatorequations, theory of approximations, transform methods, and partialdifferential equationsIt makes an excellent companion to lessgeneral engineering texts and a useful reference for practitioners.
Author : Michael Greenberg
Publisher :
Page : 1344 pages
File Size : 38,29 MB
Release : 2013-09-20
Category : Engineering mathematics
ISBN : 9781292042541
Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.
Author : Merle C. Potter
Publisher : Springer
Page : 753 pages
File Size : 46,70 MB
Release : 2019-06-14
Category : Technology & Engineering
ISBN : 3030170683
This book is designed to serve as a core text for courses in advanced engineering mathematics required by many engineering departments. The style of presentation is such that the student, with a minimum of assistance, can follow the step-by-step derivations. Liberal use of examples and homework problems aid the student in the study of the topics presented. Ordinary differential equations, including a number of physical applications, are reviewed in Chapter One. The use of series methods are presented in Chapter Two, Subsequent chapters present Laplace transforms, matrix theory and applications, vector analysis, Fourier series and transforms, partial differential equations, numerical methods using finite differences, complex variables, and wavelets. The material is presented so that four or five subjects can be covered in a single course, depending on the topics chosen and the completeness of coverage. Incorporated in this textbook is the use of certain computer software packages. Short tutorials on Maple, demonstrating how problems in engineering mathematics can be solved with a computer algebra system, are included in most sections of the text. Problems have been identified at the end of sections to be solved specifically with Maple, and there are computer laboratory activities, which are more difficult problems designed for Maple. In addition, MATLAB and Excel have been included in the solution of problems in several of the chapters. There is a solutions manual available for those who select the text for their course. This text can be used in two semesters of engineering mathematics. The many helpful features make the text relatively easy to use in the classroom.
Author : Dennis Zill
Publisher : Jones & Bartlett Learning
Page : 1005 pages
File Size : 44,22 MB
Release : 2011
Category : Mathematics
ISBN : 0763779660
Accompanying CD-ROM contains ... "a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins."--CD-ROM label.
Author : K. A. Stroud
Publisher :
Page : 0 pages
File Size : 26,48 MB
Release : 2011
Category : Engineering mathematics
ISBN : 9780831134495
A worldwide bestseller renowned for its effective self-instructional pedagogy.
Author : Carl M. Bender
Publisher : Springer Science & Business Media
Page : 605 pages
File Size : 29,22 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 1475730691
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Author : Mahir M. Sabzaliev
Publisher : CRC Press
Page : 239 pages
File Size : 16,34 MB
Release : 2018-05-03
Category : Mathematics
ISBN : 1351397109
Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On each theme the authors first present short theoretical overviews and then go on to give problems to be solved. The authors provide the solutions to some typical, relatively difficult problems and guidelines for solving them. The authors consider the development of the self-dependent thinking ability of students in the construction of problems and indicate which problems are relatively difficult. The book is geared so that some of the problems presented can be solved in class, and others are meant to be solved independently. An extensive, explanatory solution of at least one typical problem is included, with emphasis on applications, formulas, and rules. This volume is primarily addressed to advanced students of engineering and technical specialties as well as to engineers/technicians and instructors of mathematics. Key features: Presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme Provides an extended solution of at least one problem on every theme and guidelines for solving some difficult problems Selects problems for independent study as well as those for classroom time, taking into account the similarity of both sets of problems Differentiates relatively difficult problems from others for those who want to study mathematics more deeply Provides answers to the problems within the text rather than at the back of the book, enabling more direct verification of problem solutions Presents a selection of problems and solutions that are very interesting not only for the students but also for professor-teacher staff
Author : Andrea Prosperetti
Publisher : Cambridge University Press
Page : 743 pages
File Size : 43,3 MB
Release : 2011-01-06
Category : Mathematics
ISBN : 1139492683
The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.
Author : Lynn Harold Loomis
Publisher : World Scientific Publishing Company
Page : 595 pages
File Size : 48,46 MB
Release : 2014-02-26
Category : Mathematics
ISBN : 9814583952
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.