Advanced Multilevel Converters and Applications in Grid Integration


Book Description

A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the core principles of advanced multilevel converters, which require fewer components and provide higher power conversion efficiency and output power quality. The authors – noted experts in the field – explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations Provides a valid reference for further developments in the multilevel converters design issue Contains simulations files for further study Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.




Modular Multilevel Converters


Book Description

An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.




Modular Multilevel Converter Modelling and Simulation for HVDC Systems


Book Description

This book provides a comprehensive review of the models and approaches that can be employed to simulate modular multilevel converters (MMCs). Each solution is described in terms of operating principle, fields of applicability, advantages, and limitations. In addition, this work proposes a novel and efficient simulation approach for MMCs based on sub-circuit isomorphism. This technique, which has its roots in the electronics fields, can be profitably exploited to simulate MMCs regardless of the model used to describe its sub-modules, including the most accurate ones. Lastly, this book considers a well-known high voltage direct current (HVDC) benchmark system consisting of two MMCs. After describing the implementation details of each benchmark component, simulation results in several scenarios (ranging from normal operating conditions to faults in the AC and DC grid) are included to validate the proposed approach and showcase its key features. Due to its educational content, this book constitutes a useful guide for PhD students and researchers interested in the topic of MMCs and their simulation. It also serves as a starting platform for junior electrical engineers who work in the field of power electronic converters for HVDC systems.




Switching Strategies for Power Electronic Converters


Book Description

This book provides a concise introduction to switching strategies for power electronics. It provides an in-depth examination of this one concept giving a newcomer a complete immersive experience which has both the depth that is needed to gain confidence yet is simple to understand. The authors examine the basic operation of power electronic systems from scratch and with the help of simulations, how these systems can be constructed. The approach used treats power electronics similar to puzzles and rather than merely presenting them and describing how they work, explore why they came to have the construction they have, and how they could potentially be modified. The authors make extensive use of simulations, with every theory and every result accompanied by a simulation. All simulations are performed by the free and open source Python programming language and the free and open source circuit simulator Python Power Electronics.




Grid Connected Converters


Book Description

Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks. - Addresses new approaches for modeling, stability analysis and control design of GCCs - Proposes robust and flexible GCC control frameworks for supporting grid regulation - Emphasizes the application of GCCs in inertia emulation, oscillation damping control, and dynamic shaping - Addresses systematic control synthesis methodologies for system security and dynamic performance




Advanced Power Electronics Converters for Future Renewable Energy Systems


Book Description

This book narrates an assessment of numerous advanced power converters employed on primitive phase to enhance the efficiency of power translation pertaining to renewable energy systems. It presents the mathematical modelling, analysis, and control of recent power converters topologies, namely, AC/DC, DC/DC, and DC/AC converters. Numerous advanced DC-DC Converters, namely, multi-input DC-DC Converter, Cuk, SEPIC, Zeta and so forth have been assessed mathematically using state space analysis applied with an aim to enhance power efficiency of renewable energy systems. The book: Explains various power electronics converters for different types of renewable energy sources Provides a review of the major power conversion topologies in one book Focuses on experimental analysis rather than simulation work Recommends usage of MATLAB, PSCAD, and PSIM simulation software for detailed analysis Includes DC-DC converters with reasonable peculiar power rating This book is aimed at researchers, graduate students in electric power engineering, power and industrial electronics, and renewable energy.




Emerging Power Converters for Renewable Energy and Electric Vehicles


Book Description

This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.




DC—DC Converters for Future Renewable Energy Systems


Book Description

The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.




Multilevel Inverters


Book Description

Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers. Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies Assesses how to systematically deploy and control multilevel power inverters in application scenarios Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators




Grid Converters for Photovoltaic and Wind Power Systems


Book Description

Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters