Advanced Optical Communication Systems and Networks


Book Description

This resource provides the latest details on 5th generation photonic systems that can be readily applied to projects in the field. Moreover, the book provides valuable, time-saving tools for network simulation and modeling. It includes coverage of optical signal transmission systems and networks; a wide range of critical methods and techniques, such as MIMO (multiple-input and multiple-output) by employing spatial modes in few-mode and multicore optical fiber; OFDM (orthogonal frequency-division multiplexing) utilized to enhance the spectral efficiency and to enable elastic optical networking schemes; and advanced modulation and coding schemes to approach the Shannon's channel capacity limit. There are detailed discussions on the basic principles and applications of high-speed digital signal processing, as well as description of the most relevant post-detection compensation techniques




Advanced Optical Wireless Communication Systems


Book Description

Combines theory with real-world case studies to give a comprehensive overview of modern optical wireless technology.




Advanced Optical and Wireless Communications Systems


Book Description

The new edition of this popular textbook keeps its structure, introducing the advanced topics of: (i) wireless communications, (ii) free-space optical (FSO) communications, (iii) indoor optical wireless (IR) communications, and (iv) fiber-optics communications, but thoroughly updates the content for new technologies and practical applications. The author presents fundamental concepts, such as propagation principles, modulation formats, channel coding, diversity principles, MIMO signal processing, multicarrier modulation, equalization, adaptive modulation and coding, detection principles, and software defined transmission, first describing them and then following up with a detailed look at each particular system. The book is self-contained and structured to provide straightforward guidance to readers looking to capture fundamentals and gain theoretical and practical knowledge about wireless communications, free-space optical communications, and fiber-optics communications, all which can be readily applied in studies, research, and practical applications. The textbook is intended for an upper undergraduate or graduate level courses in fiber-optics communication, wireless communication, and free-space optical communication problems, an appendix with all background material needed, and homework problems. In the second edition, in addition to the existing chapters being updated and problems being inserted, one new chapter has been added, related to the physical-layer security thus covering both security and reliability issues. New material on 5G and 6G technologies has been added in corresponding chapters.




Optical Communication Systems


Book Description

Telecommunications have underpinned social interaction and economic activity since the 19th century and have been increasingly reliant on optical fibers since their initial commercial deployment by BT in 1983. Today, mobile phone networks, data centers, and broadband services that facilitate our entertainment, commerce, and increasingly health provision are built on hidden optical fiber networks. However, recently it emerged that the fiber network is beginning to fill up, leading to the talk of a capacity crunch where the capacity still grows but struggles to keep up with the increasing demand. This book, featuring contributions by the suppliers of widely deployed simulation software and academic authors, illustrates the origins of the limited performance of an optical fiber from the engineering, physics, and information theoretic viewpoints. Solutions are then discussed by pioneers in each of the respective fields, with near-term solutions discussed by industrially based authors, and more speculative high-potential solutions discussed by leading academic groups.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.




Fiber-optic Communication Systems


Book Description

CD-ROM contains: a software package for designing fiber-optic communication systems called "OptiSystem Lite" and a set of problems for each chapter.




Optical Communications


Book Description

The advantages of optical communications are many: ultra-high speed, highly reliable information transmission, and cost-effective modulation and transmission links to name but a few. It is no surprise that optical fiber communications systems are now in extensive use all over the world. Along with software and microelectronics, optical communication represents a key technology of modern telecommunication systems. Optical Communications: Components and Systems provides the basic material required for advanced study in theory and applications of optical fiber and space communication systems. After a review of some fundamental background material, component-based chapters discuss all relevant passive and active optical and optoelectronic components used in point-to-point links and in networks. Systems chapters address the analysis and optimization of both incoherent and coherent systems, introduce fiber optic link design, and discuss physical limits. The authors also provide an overview of applications such as optical networks and optical free-space communications. The advanced interactive multimedia communications of today and the future rely on optical fiber and space communication techniques. Optical Communications: Components and Systems offers engineers and physicists a working reference for the selection and design of optical communication systems and provides engineering students with a valuable text that prepares them for work in this essential and rapidly growing field.




Fiber Optic Communications


Book Description

Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpretations and real-world analogies are provided to help students grasp the fundamental concepts. Key Features: Lucid explanation of key topics such as fibers, lasers, and photodetectors. Includes recent developments such as coherent communication and digital signal processing. Comprehensive treatment of fiber nonlinear transmission. Worked examples, exercises, and answers. Accompanying website with PowerPoint slides and numerical experiments in MATLAB. Intended primarily for senior undergraduates and graduates studying fiber-optic communications, the book is also suitable as a professional resource for researchers working in the field of fiber-optic communications.




Introduction to Fiber-Optic Communications


Book Description

Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.




Optical Fiber Communications Systems


Book Description

Carefully structured to provide practical knowledge on fundamental issues, Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models explores advanced modulation and transmission techniques of lightwave communication systems. With coverage ranging from fundamental to modern aspects, the text presents optical communication techniques and applications, employing single mode optical fibers as the transmission medium. With MATLAB and Simulink models that illustrate methods, it supplies a deeper understanding of future development of optical systems and networks. The book begins with an overview of the development of optical fiber communications technology over the last three decades of the 20th century. It describes the optical transmitters for direct and external modulation technique and discusses the detection of optical signals under direct coherent and incoherent reception. The author also covers lumped Er:doped and distributed Roman optical amplifiers with extensive models for the amplification of signals and structuring the amplifiers on the Simulink platform. He outlines a design strategy for optically amplified transmission systems coupled with MATLAB Simulink models, including dispersion and attenuation budget methodology and simulation techniques. The book concludes with coverage of advanced modulation formats for long haul optical fiber transmission systems with accompanied Simulink models. Although many books have been written on this topic over the last two decades, most of them present only the theory and practice of devices and subsystems of the optical fiber communications systems in the fields, but do not illustrate any computer models to represent the true practical aspects of engineering practice. This book fills the need for a text that emphasizes practical computing models that shed light on the behavior and dynamics of the devices.