Advanced Sensors and Monitors for Process Industries and the Environment


Book Description

This volume contains papers presented at the Industrial and Environmental Monitors and Biosensors Symposium, January 1999. The eight sessions focused on subjects such as optical monitoring and control for process industries, emerging sensor technology, and environmental monitoring.




Advanced Sensor and Detection Materials


Book Description

Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.




Smart Sensors for Industry 4.0


Book Description

Discover the essential guide to harnessing the power of cutting-edge smart sensors in Industry 4.0, offering deep insights into fundamentals, fabrication techniques, and real-world IIoT applications, equipping you with the knowledge to revolutionize your industrial processes and stay ahead in the digital era. Over the last decade, technologies like the Internet of Things (IoT), big data, cloud computing, blockchain, artificial intelligence (AI), machine learning, device automation, smart sensors, etc., have become highly developed fundamental supports of Industry 4.0, replacing the conventional production systems with advanced methods, and thereby endorsing the smart industry vision. Industry 4.0 is more flexible and agile in dealing with several risk factors, further enabling improved productivity and efficiency, distribution, increased profitability, data integrity, and enhancing customer experience in the current commercial environment. For understanding and analyzing the environment, sensors play a major role in performing the measurements based on computation-produced results from the surrounding environment. Sensors have a wide range of applications for smart industrial operations. The evolution of flexible, low-cost, and multipurpose sensors and their system integration has been examined to develop advanced devices with applications in numerous fields of technology. With the development of both the Internet of Things (IoT) and the Industrial IoT (IIoT), advanced sensors and their associated applications are developing, resulting in the necessity for IoT sensors to be used for several industrial applications. Beneficial aspects of this book include: The latest research in materials and methodology for the fabrication of intelligent sensors, its IoT system integration, and IIoT applications are brought together; Promotes a vision towards making sensor-based monitoring and control of smart industry; Recent advances and challenges of smart sensors are discussed with an emphasis on unmet challenges and future directions of a roadmap to Industry 4.0. Audience This book is highly recommended to a wide range of researchers and industry engineers working in the area of fabrication and integration of industrial smart sensors for IIoT applications, advanced materials for sensor technology, fabrication and characterization of IoT sensors, development of low-cost sensors, sensor system design and integration, and its industrial applications. Post-graduate students from different streams like computer science, electronics and electrical engineering, information technology, electronic communication, etc. will benefit from reading this book.




Manufacturing Process Controls for the Industries of the Future


Book Description

Manufacturing process controls include all systems and software that exert control over production processes. Control systems include process sensors, data processing equipment, actuators, networks to connect equipment, and algorithms to relate process variables to product attributes. Since 1995, the U.S. Department of Energy Office of Industrial Technology 's (OIT) program management strategy has reflected its commitment to increasing and documenting the commercial impact of OIT programs. OIT's management strategy for research and development has been in transition from a "technology push" strategy to a "market pull" strategy based on the needs of seven energy-and waste-intensive industries-steel, forest products, glass, metal casting, aluminum, chemicals, and petroleum refining. These industries, designated as Industries of the Future (IOF), are the focus of OIT programs. In 1997, agriculture, specifically renewable bioproducts, was added to the IOF group. The National Research Council Panel on Manufacturing Process Controls is part of the Committee on Industrial Technology Assessments (CITA), which was established to evaluate the OIT program strategy, to provide guidance during the transition to the new IOF strategy, and to assess the effects of the change in program strategy on cross-cutting technology programs, that is, technologies applicable to several of the IOF industries. The panel was established to identify key processes and needs for improved manufacturing control technology, especially the needs common to several IOF industries; identify specific research opportunities for addressing these common industry needs; suggest criteria for identifying and prioritizing research and development (R&D) to improve manufacturing controls technologies; and recommend means for implementing advances in control technologies.




Spinoff


Book Description




Expanding the Vision of Sensor Materials


Book Description

Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.




Advanced Sensor Technology


Book Description

Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies. Covers a range of environmental applications such as protection and improvement of water, air, soil, plants, and agriculture and food production; biomedical applications including detection of viruses, genes, hormones, proteins, bacteria, and cancer, and applications in construction such as fire protection, automotive, robotics, food packing and micro-machining Provides an outlook on opportunities and challenges for the fabrication and manufacturing of sensors in industry and their applicability for industrial uses Demonstrates how cutting-edge developments in sensing technology translate into real-world innovations in a range of industry sectors




Advanced Sensor Technology


Book Description

Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies. - Covers a range of environmental applications such as protection and improvement of water, air, soil, plants, and agriculture and food production; biomedical applications including detection of viruses, genes, hormones, proteins, bacteria, and cancer, and applications in construction such as fire protection, automotive, robotics, food packing and micro-machining - Provides an outlook on opportunities and challenges for the fabrication and manufacturing of sensors in industry and their applicability for industrial uses - Demonstrates how cutting-edge developments in sensing technology translate into real-world innovations in a range of industry sectors




Smart Sensors for Environmental and Medical Applications


Book Description

Provides an introduction to the topic of smart chemical sensors, along with an overview of the state of the art based on potential applications This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to sensor validation, modeling, simulation, and manufacturing. It discusses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, and others. It also incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections so that readers can fully understand the advantages and disadvantages of the relevant transducers—depending on the design, transduction mode, and final applications. Smart Sensors for Environmental and Medical Applications covers all major aspects of the field of smart chemical sensors, including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis, and suitable applications. Chapters address field effect transistors technologies for biological and chemical sensors, mammalian cell–based electrochemical sensors for label-free monitoring of analytes, electronic tongues, chemical sensors based on metal oxides, metal oxide (MOX) gas sensor electronic interfaces, and more. Addressing the limitations and challenges in obtaining state-of-the-art smart biochemical sensors, this book: Balances the fundamentals of sensor design, fabrication, characterization, and analysis with advanced methods Categorizes sensors into sub-types and describes their working, focusing on prominent applications Describes instrumentation and IoT networking methods of chemical transducers that can be used for inexpensive, accurate detection in commercialized smart chemical sensors Covers monitoring of food spoilage using polydiacetylene- and liposome-based sensors; smart and intelligent E-nose for sensitive and selective chemical sensing applications; odor sensing system; and microwave chemical sensors Smart Sensors for Environmental and Medical Applications is an important book for senior-level undergraduate and graduate students learning about this high-performance technology and its many applications. It will also inform practitioners and researchers involved in the creation and use of smart sensors.




Unit Manufacturing Processes


Book Description

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.