Advanced Soil Mechanics, Fifth Edition


Book Description

Now in its fifth edition, this classic textbook continues to offer a well-tailored resource for beginning graduate students in geotechnical engineering. Further developing the basic concepts from undergraduate study, it provides a solid foundation for advanced study. This new edition addresses a variety of recent advances in the field and each section is updated. Braja Das particularly expands the content on consolidation, shear strength of soils, and both elastic and consolidation settlements of shallow foundations to accommodate modern developments. New material includes: Recently published correlations of maximum dry density and optimum moisture content of compaction Recent methods for determination of preconsolidation pressure A new correlation for recompression index Different approaches to estimating the degree of consolidation A discussion on the relevance of laboratory strength tests to field conditions Several new example problems This text can be followed by advanced courses dedicated to topics such as mechanical and chemical stabilization of soils, geo-environmental engineering, critical state soil mechanics, geosynthetics, rock mechanics, and earthquake engineering. It can also be used as a reference by practical consultants.




Advanced Soil Mechanics, Second Edition


Book Description

This revised edition is restructured with additional text and extensive illustrations, along with developments in geotechnical literature. Among the topics included are: soil aggregates, stresses in soil mass, pore water pressure due to undrained loading, permeability and seepage, consolidation, shear strength of soils, and evaluation of soil settlement. The text presents mathematical derivations as well as numerous worked-out examples.




Soil Mechanics Fundamentals


Book Description

This accessible, clear and concise textbook strikes a balance between theory and practical applications for an introductory course in soil mechanics for undergraduates in civil engineering, construction, mining and geological engineering. Soil Mechanics Fundamentals lays a solid foundation on key principles of soil mechanics for application in later engineering courses as well as in engineering practice. With this textbook, students will learn how to conduct a site investigation, acquire an understanding of the physical and mechanical properties of soils and methods of determining them, and apply the knowledge gained to analyse and design earthworks, simple foundations, retaining walls and slopes. The author discusses and demonstrates contemporary ideas and methods of interpreting the physical and mechanical properties of soils for both fundamental knowledge and for practical applications. The chapter presentation and content is informed by modern theories of how students learn: Learning objectives inform students what knowledge and skills they are expected to gain from the chapter. Definitions of Key Terms are given which students may not have encountered previously, or may have been understood in a different context. Key Point summaries throughout emphasize the most important points in the material just read. Practical Examples give students an opportunity to see how the prior and current principles are integrated to solve ‘real world’ problems.




Unsaturated Soil Mechanics in Engineering Practice


Book Description

The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.




Soil Mechanics in Engineering Practice


Book Description

This book constitutes the definitive handbook to soil mechanics, covering in great detail such topics as: Properties of Soils, Hydraulic and Mechanical Properties of Soils, Drainage of Soils, Plastic Equilibrium in Soils, Earth Stability and Pressure of Slopes, Foundations, etc. A valuable compendium for those interested in soil mechanics, this antiquarian text contains a wealth of information still very much valuable to engineers today. Karl von Terzaghi (1883 1963) was a Czech geologist and Civil engineer, hailed as the "father of soil mechanics." This book has been elected for republication due to its educational value and is proudly republished here with an introductory biography of the author."




Advanced Unsaturated Soil Mechanics and Engineering


Book Description

Analytical and comprehensive, this state-of-the-art book, examines the mechanics and engineering of unsaturated soils, as well as explaining the laboratory and field testing and research that are the logical basis of this modern approach to safe construction in these hazardous geomaterials; putting them into a logical framework for civil engineerin




Introduction to Soil Mechanics


Book Description

INTRODUCTION TO SOIL MECHANICS Introduction to Soil Mechanics covers the basic principles of soil mechanics, illustrating why the properties of soil are important, the techniques used to understand and characterise soil behaviour and how that knowledge is then applied in construction. The authors have endeavoured to define and discuss the principles and concepts concisely, providing clear, detailed explanations, and a wellillustrated text with diagrams, charts, graphs and tables. With many practical, worked examples and end-of-chapter problems (with fully worked solutions available at www.wiley.com/go/bodo/soilmechanics) and coverage of Eurocode 7, Introduction to Soil Mechanics will be an ideal starting point for the study of soil mechanics and geotechnical engineering. This book’s companion website is at www.wiley.com/go/bodo/soilmechanics and offers invaluable resources for both students and lecturers: Supplementary problems Solutions to supplementary problems




Foundation Analysis and Design


Book Description

The revision of this best-selling text for a junior/senior course in Foundation Analysis and Design now includes an IBM computer disk containing 16 compiled programs together with the data sets used to produce the output sheets, as well as new material on sloping ground, pile and pile group analysis, and procedures for an improved anlysis of lateral piles. Bearing capacity analysis has been substantially revised for footings with horizontal as well as vertical loads. Footing design for overturning now incorporates the use of the same uniform linear pressure concept used in ascertaining the bearing capacity. Increased emphasis is placed on geotextiles for retaining walls and soil nailing.




Geotechnical Engineering


Book Description

A must have reference for any engineer involved with foundations, piers, and retaining walls, this remarkably comprehensive volume illustrates soil characteristic concepts with examples that detail a wealth of practical considerations, It covers the latest developments in the design of drilled pier foundations and mechanically stabilized earth retaining wall and explores a pioneering approach for predicting the nonlinear behavior of laterally loaded long vertical and batter piles. As complete and authoritative as any volume on the subject, it discusses soil formation, index properties, and classification; soil permeability, seepage, and the effect of water on stress conditions; stresses due to surface loads; soil compressibility and consolidation; and shear strength characteristics of soils. While this book is a valuable teaching text for advanced students, it is one that the practicing engineer will continually be taking off the shelf long after school lets out. Just the quick reference it affords to a huge range of tests and the appendices filled with essential data, makes it an essential addition to an civil engineering library.




Essentials of Soil Mechanics and Foundations: Pearson New International Edition


Book Description

For courses in Soil Mechanics and Foundations. Essentials of Soil Mechanics and Foundations: Basic Geotechnics, Seventh Edition, provides a clear, detailed presentation of soil mechanics: the background and basics, the engineering properties and behavior of soil deposits, and the application of soil mechanics theories. Appropriate for soil mechanics courses in engineering, architectural and construction-related programs, this new edition features a separate chapter on earthquakes, a more logical organization, and new material relating to pile foundations design and construction and soil permeability. It's rich applications, well-illustrated examples, end-of-chapter problems and detailed explanations make it an excellent reference for students, practicing engineers, architects, geologists, environmental specialists and more.