Advancements in Real-Time Simulation of Power and Energy Systems


Book Description

Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.




Power Converter of Electric Machines, Renewable Energy Systems, and Transportation


Book Description

Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems.




Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL


Book Description

This book is an edited collection that explores the fundamental concepts of real-time simulation/hardware-in-the-loop testing using Typhoon HIL for complex electrical systems. Typhoon HIL has recently emerged as a powerful tool in the rapidly growing field of ultra-high-fidelity controller-hardware-in-the-loop (C-HIL) simulations for power electronics, microgrids, and distribution networks. The book integrates the coverage of underlying theory and acclaimed methodological approaches and high-value applications of real-time simulation and hardware-in-the-loop testingall from the perspectives of eminent researchers around the globe utilizing Typhoon HIL. This book serves as a valuable resource for engineers, academicians, researchers, experienced professionals, and research scholars engaged in /becoming familiarized with the real-time simulation of complex electrical systems using Typhoon HIL with a specific focus on hardware-in-the-loop testing.




Intelligent Data Analytics for Power and Energy Systems


Book Description

This book brings together state-of-the-art advances in intelligent data analytics as driver of the future evolution of PaE systems. In the modern power and energy (PaE) domain, the increasing penetration of renewable energy sources (RES) and the consequent empowerment of consumers as a central and active solution to deal with the generation and development variability are driving the PaE system towards a historic paradigm shift. The small-scale, diversity, and especially the number of new players involved in the PaE system potentiate a significant growth of generated data. Moreover, advances in communication (between IoT devices and M2M: machine to machine, man to machine, etc.) and digitalization hugely increased the volume of data that results from PaE components, installations, and systems operation. This data is becoming more and more important for PaE systems operation, maintenance, planning, and scheduling with relevant impact on all involved entities, from producers, consumer,s and aggregators to market and system operators. However, although the PaE community is fully aware of the intrinsic value of those data, the methods to deal with it still necessitate substantial enhancements, development and research. Intelligent data analytics is thereby playing a fundamental role in this domain, by enabling stakeholders to expand their decision-making method and achieve the awareness on the PaE environment. The editors also included demonstrated codes for presented problems for better understanding for beginners.




Sustainable Energy and Technological Advancements


Book Description

This book contains selected papers presented at Second International Symposium on Sustainable Energy and Technological Advancements (ISSETA 2023), organized by the Department of Electrical Engineering, NIT Meghalaya, Shillong, India, during February 24–25, 2023. The topics covered in the book are the cutting-edge research involved in sustainable energy technologies, smart building technology, integration and application of multiple energy sources; advanced power converter topologies and their modulation techniques; and information and communication technologies for smart micro-grids.




Emerging Developments in the Power and Energy Industry


Book Description

Power and Energy Engineering are important and pressing topics globally, covering issues such as shifting paradigms of energy generation and consumption, intelligent grids, green energy and environmental protection. The 11th Asia-Pacific Power and Energy Engineering Conference (APPEEC 2019) was held in Xiamen, China from April 19 to 21, 2019. APPEEC has been an annual conference since 2009 and has been successfully held in Wuhan (2009 & 2011), Chengdu (2010 & 2017), Shanghai (2012 & 2014), Beijing (2013 & 2015), Suzhou (2016) and Guilin (2018), China. The objective of APPEEC 2019 was to provide scientific and professional interactions for the advancement of the fields of power and energy engineering. APPEEC 2019 facilitated the exchange of insights and innovations between industry and academia. A group of excellent speakers have delivered keynote speeches on emerging technologies in the field of power and energy engineering. Attendees were given the opportunity to give oral and poster presentations and to interface with invited experts.




Smart Energy and Advancement in Power Technologies


Book Description

This book comprises peer-reviewed proceedings of the International Conference on Smart Energy and Advancement in Power Technologies (ICSEAPT-2021). The book includes peer-reviewed papers on renewable energy economics and policy, renewable energy resource assessment, operations management and sustainability, energy audit, global warming, waste and resource management, green energy deployment, green buildings, integration of green energy, energy efficiency, etc. The book serves as a valuable reference resource for academics and researchers across the globe.




Recent Advances in Renewable Energy Technologies


Book Description

Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies.Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. - Focuses on the progress and research trends in solar, wind, biomass, and hydropower and geothermal energy production and conversion - Includes advanced techniques for the distribution, management, optimization, and storage of heat and energy using case studies




Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids


Book Description

A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing.




Modeling and Control of Sustainable Power Systems


Book Description

The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.