Advances and Challenges in Organic Electronics


Book Description

Organic Electronics is a rapidly evolving multidisciplinary research field at the interface between Organic Chemistry and Physics. Organic Electronics is based on the use of the unique optical and electrical properties of π-conjugated materials that range from small molecules to polymers. The wide activity of researchers in Organic Electronics is testament to the fact that its potential is huge and its list of potential applications almost endless. Application of these electronic and optoelectronic devices range from Organic Field Effect Transistors (OFETs) to Organic Light Emitting Diodes (OLEDs) and Organic Solar Cells (OSCs), sensors, etc. We invited a series of colleagues to contribute to this Special Issue with respect to the aforementioned concepts and keywords. The goal for this Special Issue was to describe the recent developments of this rapidly advancing interdisciplinary research field. We thank all authors for their contributions.




Organic Electronics


Book Description

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.




Organic Electronics in Sensors and Biotechnology


Book Description

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The latest in organic electronics-based sensing and biotechnology Develop high-performance, field-deployable organic semiconductor-based biological, chemical, and physical sensor arrays using the comprehensive information contained in this definitive volume. Organic Electronics in Sensors and Biotechnology presents state-of-the-art technology alongside real-world applications and ongoing R & D. Learn about light, temperature, and pressure monitors, integrated flexible pyroelectric sensors, sensing of organic and inorganic compounds, and design of compact photoluminescent sensors. You will also get full details on organic lasers, organic electronics in memory elements, disease and pathogen detection, and conjugated polymers for advancing cellular biology. Monitor organic and inorganic compounds with OFETs Characterize organic materials using impedance spectroscopy Work with organic LEDs, photodetectors, and photovoltaic cells Form flexible pyroelectric sensors integrated with OFETs Build PL-based chemical and biological sensing modules and arrays Design organic semiconductor lasers and memory elements Use luminescent conjugated polymers as optical biosensors Deploy polymer-based switches and ion pumps at the microfluidic level




Handbook of Organic Materials for Electronic and Photonic Devices


Book Description

Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. - Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials - Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices - New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication




Organic Semiconductors


Book Description

This book is a printed edition of the Special Issue "Organic Semiconductors" that was published in Electronics




Organic Electronics


Book Description

Edited and written by the leading researchers and engineers from such companies as Philips, 3M, Xerox, Infineon, PlasticLogic, Eastman Kodak, Dupont, AIXTRON, and Hueck Folien, this book presents unrivalled and undiluted expertise from those who know best how to assess the risks, opportunities and where this technology is really heading. As such, this practical approach complements the more scientific and fundamentals-oriented literature on the market by providing readers with a first-hand insight into industrial activities to commercialize organic electronics. Following an introduction to the topic, including the history, motivation, benefits and potentials, it reviews recent advances and covers all three important facets of organic electronics: the chemical compounds and materials, manufacturing techniques, and the resulting devices together with their current applications.




Handbook of Flexible Organic Electronics


Book Description

Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. - Reviews the properties and production of various flexible organic materials. - Describes the integration technologies of flexible organic electronics and their manufacturing methods. - Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.




Advances in Photodiodes


Book Description

Photodiodes, the simplest but most versatile optoelectronic devices, are currently used in a variety of applications, including vision systems, optical interconnects, optical storage systems, photometry, particle physics, medical imaging, etc. Advances in Photodiodes addresses the state-of-the-art, latest developments and new trends in the field, covering theoretical aspects, design and simulation issues, processing techniques, experimental results, and applications. Written by internationally renowned experts, with contributions from universities, research institutes and industries, the book is a valuable reference tool for students, scientists, engineers, and researchers.




Materials Research to Meet 21st-Century Defense Needs


Book Description

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.




Organic Semiconductors for Optoelectronics


Book Description

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.