Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part B


Book Description

Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part B, Volume 185 presents many aspects of AIE materials that can help future investigators, researchers, students and stakeholders perform research with ease. This volume covers various topics, including tissue and protein fibrils imaging by AIE active molecules, theranostic and photodynamic therapy applications of AIE materials for cancer cell treatment, and AIE active polymers and MOF materials for biological applications. Fluorescence-based monitoring and diagnosis platforms furnish extensive insights into the molecular mechanisms of cellular processes, helping us precisely guide therapeutics. - Offers an overview of AIE active polymer materials and their bio-imaging applications - Elucidates on tissue and protein fibrils imaging by AIE active molecules - Describes theranostic and photodynamic therapy applications of AIE materials for cancer cell treatment




Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part A


Book Description

Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part A Volume 184, highlights many aspects of AIE materials that can help future investigators, researchers, students and stakeholders perform research with ease. Emitting light is a fascinating photophysical phenomenon, its different forms have brought the attention of various disciplines of natural sciences for centuries. In the modern era of scientific generation, short-lived fluorescence light and its long-lived counterpart phosphorescence light has been employed for several chemo-sensing, bio-sensing, and bioimaging applications. The aggregation induced emission (AIE) phenomenon has appeared as a wand of modern science to convert aggregation-caused quenching (ACQ) materials into AIE active materials for a wide range of biomedical applications including biosensing, bioimaging and localization of molecules for better understanding of molecular mechanisms. This volume covers a wide range of topics which are not currently available in a single volume, including ACQ & AIE concept development; intracellular pH, temperature and viscosity sensing; imaging of cell membrane, lipid droplet, lysosome, and mitochondria; biosensing and Imaging of bacteria; nucleus and nucleic acid imaging. - Offers a basic understanding of AIE principle, mechanism and transformation of ACQ active to AIE active materials - Elucidates nucleus and nucleic acid imaging applications of AIE active small molecules - Describes imaging of cell membrane, lipid droplet, lysosome, and mitochondria of AIE molecules




Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part B


Book Description

Advances in Aggregation Induced Emission Materials in Biosensing and Imaging for Biomedical Applications - Part B, Volume 185 presents many aspects of AIE materials that can help future investigators, researchers, students and stakeholders perform research with ease. This volume covers various topics, including tissue and protein fibrils imaging by AIE active molecules, theranostic and photodynamic therapy applications of AIE materials for cancer cell treatment, and AIE active polymers and MOF materials for biological applications. Fluorescence-based monitoring and diagnosis platforms furnish extensive insights into the molecular mechanisms of cellular processes, helping us precisely guide therapeutics.




Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine


Book Description

Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine discusses recent advances in science and technology using nanoscale units that show the novel concept of combining nanotechnology with various research disciplines within both the biomedical and medicine fields. Self-assembly of molecules, macromolecules, and polymers is a fascinating strategy for the construction of various desired nanofabrication in chemistry, biology, and medicine for advanced applications. It has a number of advantages: (1) It is involving atomic-level modification of molecular structure using bond formation advanced techniques of synthetic chemistry. (2) It draws from the enormous wealth of examples in biology for the development of complex, functional structures. (3) It can incorporate biological structures directly as components in the final systems. (4) It requires that the target self-assembled structures be thermodynamically most stable with relatively defect-free and self-healing. In this book, we cover the various emerging self-assembled nanostructured objects including molecular machines, nano-cars molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nano-flakes, nano-cubes, nano-disks, nanorings, DNA origami, transmembrane channels, and vesicles. These self-assembled materials are used for sensing, drug delivery, molecular recognition, tissue engineering energy generation, and molecular tuning. - Provides a basic understanding of how to design, and implement various self-assembled nanobiomaterials - Covers principles implemented in the constructions of novel nanostructured materials - Offers many applications of self-assemblies in fluorescent biological labels, drug and gene delivery, bio-detection of pathogens, detection of proteins, probing of DNA structure, tissue engineering, and many more




Aggregation-Induced Emission (AIE)


Book Description

Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development. - Provides the fundamental principles, design and synthesis strategies of aggregation induced emission materials - Reviews the most relevant applications in materials design for stimuli-responsive materials, biomedical applications, chemo-sensing and optoelectronics - Emphasizes structural design and its connection to aggregation induced emission properties, also exploring the structure-property relationship




Biomedical Imaging Instrumentation


Book Description

Biomedical Imaging Instrumentation: Applications in Tissue, Cellular and Molecular Diagnostics provides foundational information about imaging modalities, reconstruction and processing, and their applications. The book provides insights into the fundamental of the important techniques in the biomedical imaging field and also discusses the various applications in the area of human health. Each chapter summarizes the overview of the technique, the various applications, and the challenges and recent innovations occurring to further improve the technique. Chapters include Biomedical Techniques in Cellular and Molecular Diagnostics, The Role of CT Scan in Medical and Dental Imaging, Ultrasonography - Technology & Applications in Clinical Radiology, Magnetic Resonance Imaging, Instrumentation and Utilization of PET-CT Scan in Oncology, Gamma Camera and SPECT, Sentinel of Breast Cancer Screening; Hyperspectral Imaging; PA Imaging; NIR Spectroscopy, and The Advances in Optical Microscopy and its Applications in Biomedical Research. This book is ideal for supporting learning, and is a key resource for students and early career researchers in fields such as medical imaging and biomedical instrumentation. - A basic, fundamental, easy to understand introduction to medical imaging techniques - Each technique is accompanied with detailed discussion on the application in the biomedical field in an accessible and easy to understand way - Provides insights into the limitations of each technology and innovations that are occurring related to that technology




Nanomaterials for Sustainable Development


Book Description

This book highlights recent advances in variety of nanomaterials classes including metal chalcogenides, metal oxides/hydroxides, polymer, metal-organic frameworks, and hybrid nanostructures, with a focus on their properties, synthesis methods, and key applications. It also offers detailed coverage on the toxicity aspects with possible solution. Additionally, it provides complete and comprehensive information on surface modification strategies of nanoparticles to achieve desired outcomes. This book discusses potential applications and major challenges of using these nanomaterials in the fields of biomedical sciences, agricultural industry, bioenergy, biofuel production, and environmental remediation, etc. Overall, this book provides crucial background in nanobiotechnology that compliments the understanding of experimental design for the production of more customized nanomaterials to avail desirable benefits.




The Soul of Politics


Book Description

WITH A NEW PREFACE BY THE AUTHOR Harry V. Jaffa (1918–2015), professor at Claremont McKenna College and distinguished fellow of the Claremont Institute, was one of the most influential thinkers of the twentieth century. His hundreds of students have reached positions of power and prestige throughout the intellectual and political world, including at the Supreme Court and the Trump White House. Jaffa authored Barry Goldwater’s famous 1964 Republican Convention speech, which declared, “Extremism in the defense of liberty is no vice. And moderation in the pursuit of justice is no virtue.” William F. Buckley, Jaffa’s close friend and a key figure in shaping the modern conservative movement, wrote, “If you think it is hard arguing with Harry Jaffa, try agreeing with him.” His widely acclaimed book Crisis of the House Divided: An Interpretation of the Issues in the Lincoln-Douglas Debates (1959) was the first scholarly work to treat Abraham Lincoln as a serious philosophical thinker. As the earliest protégé of the controversial scholar Leo Strauss, Jaffa used his theoretical insights to argue that the United States is the “best regime” in principle. He saw the American Revolution and the Civil War as world-historical events that revealed the true nature of politics. Statesmanship, constitutional government, and the virtues of republican citizenship are keys to unlocking the most important truths of political philosophy. Jaffa’s student, Glenn Ellmers, was given complete access to Jaffa’s private papers at Hillsdale College to produce the first comprehensive examination of his teacher’s vast body of work. In addition to Lincoln and the founding fathers, the book shares Jaffa’s profound insights into Aristotle, William Shakespeare, Winston Churchill, and more.




Introduction to Biophotonics


Book Description

Paras Prasad’s text provides a basic knowledge of a broad range of topics so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in biophotonics. Introduction to Biophotonics serves as both a textbook for education and training as well as a reference book that aids research and development of those areas integrating light, photonics, and biological systems. Each chapter contains a topic introduction, a review of key data, and description of future directions for technical innovation. Introduction to Biophotonics covers the basic principles of Optics Optical spectroscopy Microscopy Each section also includes illustrated examples and review questions to test and advance the reader’s knowledge. Sections on biosensors and chemosensors, important tools for combating biological and chemical terrorism, will be of particular interest to professionals in toxicology and other environmental disciplines. Introduction to Biophotonics proves a valuable reference for graduate students and researchers in engineering, chemistry, and the life sciences.




Metal-Enhanced Fluorescence


Book Description

Discover how metal-enhanced fluorescence is changing traditional concepts of fluorescence This book collects and analyzes all the current trends, opinions, and emerging hot topics in the field of metal-enhanced fluorescence (MEF). Readers learn how this emerging technology enhances the utility of current fluorescence-based approaches. For example, MEF can be used to better detect and track specific molecules that may be present in very low quantities in either clinical samples or biological systems. Author Chris Geddes, a noted pioneer in the field, not only explains the fundamentals of metal-enhanced fluorescence, but also the significance of all the most recent findings and models in the field. Metal-enhanced fluorescence refers to the use of metal colloids and nanoscale metallic particles in fluorescence systems. It offers researchers the opportunity to modify the basic properties of fluorophores in both near- and far-field fluorescence formats. Benefits of metal-enhanced fluorescence compared to traditional fluorescence include: Increased efficiency of fluorescence emission Increased detection sensitivity Protect against fluorophore photobleaching Applicability to almost any molecule, including both intrinsic and extrinsic chromophores Following a discussion of the principles and fundamentals, the author examines the process and applications of metal-enhanced fluorescence. Throughout the book, references lead to the primary literature, facilitating in-depth investigations into particular topics. Guiding readers from the basics to state-of-the-technology applications, this book is recommended for all chemists, physicists, and biomedical engineers working in the field of fluorescence.