Advances in Algorithms, Languages, and Complexity


Book Description

This book contains a collection of survey papers in the areas of algorithms, lan guages and complexity, the three areas in which Professor Ronald V. Book has made significant contributions. As a fonner student and a co-author who have been influenced by him directly, we would like to dedicate this book to Professor Ronald V. Book to honor and celebrate his sixtieth birthday. Professor Book initiated his brilliant academic career in 1958, graduating from Grinnell College with a Bachelor of Arts degree. He obtained a Master of Arts in Teaching degree in 1960 and a Master of Arts degree in 1964 both from Wesleyan University, and a Doctor of Philosophy degree from Harvard University in 1969, under the guidance of Professor Sheila A. Greibach. Professor Book's research in discrete mathematics and theoretical com puter science is reflected in more than 150 scientific publications. These works have made a strong impact on the development of several areas of theoretical computer science. A more detailed summary of his scientific research appears in this volume separately.




Advanced Algorithms and Data Structures


Book Description

Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization




Computational Complexity


Book Description

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.




Boolean Function Complexity


Book Description

Boolean circuit complexity is the combinatorics of computer science and involves many intriguing problems that are easy to state and explain, even for the layman. This book is a comprehensive description of basic lower bound arguments, covering many of the gems of this “complexity Waterloo” that have been discovered over the past several decades, right up to results from the last year or two. Many open problems, marked as Research Problems, are mentioned along the way. The problems are mainly of combinatorial flavor but their solutions could have great consequences in circuit complexity and computer science. The book will be of interest to graduate students and researchers in the fields of computer science and discrete mathematics.




Developments in Language Theory


Book Description

The refereed proceedings of the 7th International Conference on Developments in Language Theory, DLT 2003, held in Szeged, Hungary, in July 2003. The 27 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 57 submissions. All current aspects in language theory are addressed, in particular grammars, acceptors, and transducers for strings, trees, graphs, arrays, etc; algebraic theories for automata and languages; combinatorial properties of words and languages; formal power series; decision problems; efficient algorithms for automata and languages; and relations to complexity theory and logic, picture description and analysis, DNA computing, quantum computing, cryptography, and concurrency.




Algorithms, Part II


Book Description

This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.




Advanced Data Structures


Book Description

Learn Data Structures and Algorithms! This book is a collection of lectures notes on Data Structures and Algorithms. The content found in this book supplements the free video lecture series, of the same name, "Advanced Data Structures", by the author, Dr. Daniel Page. This video lecture series is available at http://www.pagewizardgames.com/datastructures. This book: -Contains Computer Science topics and materials comparable to those found among university courses at a similar level (second-year) at top Canadian universities. -Provides an accessible written companion and supplemental notes for those that wish to learn the subject of Data Structures and Algorithms from the video lecture series, but have difficulties taking notes, or would prefer having a written alternative to follow along. This book is ideal for those with already an introductory programming background, know a little bit about computing, and wish to learn more about Data Structures and Algorithms and begin a more formal study of Computer Science. The materials here are a great place to start for supplemental/additional learning materials on the subject for self-study, university students, or those that want to learn more about Computer Science. Dr. Daniel Page places great emphasis on the introductory mathematical aspects of Computer Science, a natural transition from a basic programming background to thinking a bit more like a computer scientist about Computer Science. This book is not a textbook. The author assumes the reader is familiar with algebra, functions, common finite and infinite series such as arithmetic series and geometric series, and basic control structures in programming or logic. All the algorithms in this book are described in English, or using Java-like pseudocode. Chapters -Chapter 1 - Introduction: Data Structures, Problems, Input Size, Algorithms, The Search Problem. -Chapter 2 - Intro to Analysis of Algorithms I: Complexity Analysis, Comparing Algorithms, Growth Rate of Functions (Asymptotics), Showing f is O(g), Showing f is not O(g). -Chapter 3 - Intro to Analysis of Algorithms II: Some Properties of O, An Iterative Example, Back to our "Easy" Search Problem. -Chapter 4 - Dictionaries: The Dictionary Problem, Simple Implementations of a Dictionary. -Chapter 5 - Hashing: Hash Function, Hash Code, Separate Chaining, Open Addressing, Revisiting the Load Factor. -Chapter 6 - Trees: Tree ADT, Linked Tree Representation, Tree Property, Computing Height of a Tree, Tree Traversals -Chapter 7 - Priority Queues & Heaps: Priority Queues, Heaps, Array-Based Implementation, Building a Heap, Application: Sorting, Introduction to Amortized Analysis -Chapter 8 - Binary Search Trees: Ordered Dictionary ADT, BST Implementations, Inorder Traversal, Smallest, Get, Put, Remove, Successor. -Chapter 9 - AVL Trees: Height, AVL Trees, Re-Balancing AVL Trees, putAVL, removeAVL, AVL Tree Performance. -Chapter 10 - Graphs: Degrees and the Handshaking Lemma, Complete Graphs, Paths and Cycles, Trees, Forests, Subgraphs, and Connectivity, Graph Representations. -Chapter 11 - Graph Traversals: Depth-First Search (DFS), Path-Finding, Cycle Detection, Counting Vertices, DFS Tree, Breadth-First Search (BFS), Summary. -Chapter 12 - Minimum Spanning Trees: Weighted Graphs, Minimum Spanning Trees & Algorithms, Prim's Algorithm, Heap-Based Implementation of Prim's Algorithm and More! -Chapter 13 - Shortest Paths: Single-Source Shortest Path Problem, Dijkstra's Algorithm. -Chapter 14 - Multiway Search Trees: Beyond Binary Search Trees, Get, Put, Successor and Remove, (2,4)-Trees, B-Trees.




Developments in Language Theory


Book Description

This book constitutes the refereed proceedings of the 16th International Conference on Developments in Language Theory, DLT 2012, held in Taipei, Taiwan, in August 2012. The 34 regular papers presented were carefully reviewed and selected from numerous submissions. The volume also contains the papers or extended abstracts of 4 invited lectures, as well as a special memorial presentation in honor of Sheng Yu. The topics covered include grammars, acceptors and transducers for words, trees and graphs; algebraic theories of automata; algorithmic, combinatorial and algebraic properties of words and languages; variable length codes; symbolic dynamics; cellular automata; polyominoes and multidimensional patterns; decidability questions; image manipulation and compression; efficient text algorithms; relationships to cryptography, concurrency, complexity theory and logic; bio-inspired computing; quantum computing.




Algorithms and Complexity


Book Description

This book is an introductory textbook on the design and analysis of algorithms. The author uses a careful selection of a few topics to illustrate the tools for algorithm analysis. Recursive algorithms are illustrated by Quicksort, FFT, fast matrix multiplications, and others. Algorithms associated with the network flow problem are fundamental in many areas of graph connectivity, matching theory, etc. Algorithms in number theory are discussed with some applications to public key encryption. This second edition will differ from the present edition mainly in that solutions to most of the exercises will be included.




Computability and Complexity Theory


Book Description

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes