Advances in Bioelectrochemistry Volume 5


Book Description

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of emerging techniques and materials, biodevice design and reactions. The chapters provide relevant bibliographic information for researchers and students interested in electrochemical impedance spectroscopy applied in biodevices, trends, and validation on impedimetric immunosensors in the application of routine analysis, electrochemical–surface plasmon bioanalytics and carbon nanomaterials in electrochemical biodevices, insights on inorganic complexes and metal based for biomarkers sensors, bioelectrodes and cascade reactions and field effect-based reactions.




Advances in Bioelectrochemistry Volume 4


Book Description

This book presents a collection of chapters on modern bioelectrochemistry focusing on new materials for biodevice, bioelectrosynthesis and bioenergy. The chapters cover protein engineering, semiconductors, biorecognition, graphene-based bioelectronics, bioelectrosynthesis, biofuel cells, bioinspired batteries and biophotovoltaics.




Advances in Bioelectrochemistry Volume 3


Book Description

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of biodevices. The chapters cover biomedical applications, virus and antigens detection, miniaturized and wearable devices, screen-printed biosensors, hybrids surfaces, point-of-care and molecular diagnoses. They provide relevant bibliographic information for researchers and students interested in field effect transistors for biomedical applications, virus and antigens detection in immuno technologies and biosensors in point-of-care for molecular analysis, with strategies and perspectives to healthcare. This book also presents insights on advantages and properties of materials aiming biosensors applications.




Advances in Bioelectrochemistry Volume 1


Book Description

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of electron transfer reactions in biological systems and techniques. The chapters cover computer simulation, biomolecules on surfaces, direct and mediated electron transfer, electron transfer kinetics, surface-confined biomolecules, field-effect transistor effects, supramolecular electrochemistry, in situ and operando techniques in bioelectrochemistry. They provide relevant bibliographic information for researchers and students interested in computer simulation involving biomolecules on surfaces, processes of direct and mediated electron transfer kinetics of cytochrome c, surface-confined biomolecules for application in bioelectronics, sensitive devices based on field-effect transistors, insights on supramolecular electrochemistry with recent trends and perspectives and technological innovation on instrumentation applied in operando techniques field.




Bioelectrochemistry


Book Description

Bioelectrochemistry: Fundamentals, Experimental Techniques and Application, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of biolelectrochemisty including amperometric biosensors, immunoassays, electrochemistry of DNA, biofuel cells, whole cell biosensors, in vivo applications and bioelectrosynthesis. By bringing together these different aspects, this work provides a unique source of information in this area, approaching the subject from a cross-disciplinary viewpoint.




Advanced Materials and Techniques for Biosensors and Bioanalytical Applications


Book Description

Bioanalytical science and its technological subdomain, biosensors, are ever-evolving subjects, striving for rapid improvement in terms of performance and expanding the target range to meet the vast societal and market demands. The key performance factors for a biosensor that drive the research are selectivity, sensitivity, response time, accuracy, and reproducibility, with additional requirements of its portability and inexpensive nature. These performance factors are largely governed by the materials and techniques being used in these bioanalytical platforms. The selection of materials to meet these requirements is critical, as their interaction or involvement with the biological recognition elements should initiate or improve these performance factors. The technique discussed primarily applies to transducers involved in converting a biochemical signal to optical or electrical signals. Over the years, the emergence of novel materials and techniques has drastically improved the performance of these bioanalytical systems, enabling them to expand their analytical horizon. These advanced materials and techniques are central to modern bioanalytical and biosensor research. Advanced Materials and Techniques for Biosensors and Bioanalytical Applications provides a comprehensive review of the subject, including a knowledge platform for both academics and researchers. Considering biosensors as a central theme to this book, an outline on this subject with background principles has been included, with a scope of extending the utility of the book to coursework in graduate and postgraduate schools. Features: • Basic principles on different classes of biosensors, recent advances and applications • Smart materials for biosensors and other rapid, portable detection devices • Metal nanoparticles and nanocrystals for analytical applications • Carbon-based nanoparticles and quantum dots for sensing applications • Nanozymes as potential catalysts for sensing applications • Bioelectrochemiluminescence and photoelectrochemical-based biosensors • Paper electronics and paper-based biosensors • Microbial biosensors: artificial intelligence, genetic engineering, and synthetic biology • Biofuel cells as a signal transduction platform • FET-based biosensors, including ISFET and BioFET This book serves as a reference for scientific investigators and a textbook for a graduate-level course in biosensors and advanced bioanalytical techniques.




Advances in Bioelectrochemistry Volume 2


Book Description

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of materials and electrode processes. The chapters cover biomimetics, bioelectrocatalysis, large-scale biodevices manufacturing, organic semiconductors for biorecognition, biofunctionalization, conducting polymers, carbon-based materials and 3D printed bioelectrochemical devices. They provide relevant bibliographic information for researchers and students interested in biomimetics applied in electrochemistry with impact in bioelectrocatalysis, large-scale deposition techniques applied to biodevices manufacturing and organic semiconductors as support material for electrochemical biorecognition. This book also presents insights on advantages and properties of biofunctionalization, conducting polymers with carbon-based materials in biosensors applications and progress on 3D printed electrochemical devices for sensing and biosensing of biomarkers.




Bioelectrochemistry II


Book Description

This book contains the lectures of the second course devoted to bioelectro chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special ized study of biological phenomena, for which the investigation using the dual approach, physico-chemical and biological, is unavoidable. Since, as already mentioned, it was impossible to exhaust, even roughly, is a short course like this, the presentation and introductory treatment of the extremely large variety of membrane phenomena, it can be expected that the third course will continue the subject of membrane phenomena deepening some ones presented in this course and introducing some new ones. vii CONTENTS Symbols and acronyms IX Opening address G. MILAZZO 1 Structure of biological membranes and of their models I J . A. HAYWARD et al.




Voltammetry for Sensing Applications


Book Description

Voltammetry for Sensing Applications familiarizes readers with recent advancements in the field of electrochemical analysis. The book features 16 chapters which cover many applications of voltammetric analysis such as drug testing and analysis, sensors for point-of-care devices, sensors for diverse analysis, advanced energy storage devices, clinical sample analysis, sensors for the detection of heavy metals, nanomaterials, disease detection, immune sensors, food sample analysis, and anti-inflammatory and anticancer drug detection. Many of the current methods of voltammetry offer increased stability, repeatability, high performance, cost-effectiveness, time-saving, sensitivity, and the chapters also cover appropriate applications for the sensing tools and methodologies which are imperative in electrochemical, environment, biological, medicinal, and food safety analysis. This informative reference serves as a timely and comprehensive update on voltammetry and sensing materials for chemistry scholars and industrial chemists alike.




Electrochemistry in Research and Development


Book Description

This volume contains the papers presented at the UNESCO Scientific Forum on Chemistry in the Service of Mankind - Electrochemistry in Research and Development, held in Paris, June 4-6, 1984. Electrochemistry is concerned with the way electricity produces chemical changes and in turn chemical changes result in the production of electricity. This interaction forms the basis for an enormous variety of processes ranging from heavy industry through batteries to biological phenomena. Although there are many established applications, modern research has led to a great expansion in the possibilities for using electrochemistry in exciting future developments. To encourage this progress, UNESCO has set up an Expert Committee on Electrochemistry and its Applications in the European and North American region, which has already held a number of meetings devoted to specific topics. To achieve a synthesis of the main directions of development and to demonstrate the importance of these for the needs of our modern society, the Expert Committee organized a Forum on Electrochemistry in Research and Development. The object of this was to assess the future trends in research and development and to establish a dialogue between experts in electrochemistry and their colleagues in the many other disciplines which can make use of electrochemistry. The Forum was also intended to present electrochemistry and its applications in a form accessible to non-specialists so that science policy-makers will be aware of the potentialities of this subject for the future needs of mankind.