Advances in Carbene Chemistry, Volume 2


Book Description

Beginning as chemical curiosities, carbenes are now solidly established as reactive intermediates with fascinating and productive research areas of their own. Five decades of divalent carbon chemistry have provided us with a vast repertoire of new, unusual and surprising reactions. Some of those reactions, once classified as exotic, have become standard methods in organic synthesis. These highly reactive carbene species have been harnessed and put to work to achieve difficult synthetic tasks that other reactive intermediates cannot easily perform. The fruitful relationship between experiment and theory has pushed carbene chemistry further toward the direction of reaction control; that is, regio- and stereoselectivity in intra- and intermolecular addition and insertion reactions. The interplay between experiment and modern spectroscopy has led to the characterisation of many carbenes that are crucial to both an understanding and a further development of this field. Understanding of carbene chemistry has advanced dramatically, especially in the last decade, and new developments continue to emerge. Some of the recent exciting findings have been collected in the first volume of Advances in Carbene Chemistry. With this second volume, the series will continue to provide a periodic coverage of carbene chemistry in its broadest sense - leading into the next century.




Advances in Carbene Chemistry, Volume 3


Book Description

Our understanding of carbene chemistry has advanced dramatically, especially in the last decade, and new developments continue to emerge. Some of the recent exciting findings have been collected in the first and second volumes of Advances in Carbene Chemistry. With the third volume, the series continues to provide a periodic coverage of carbene chemistry in its broadest sense. Beginning as chemical curiosities, carbenes are now solidly established as reactive intermediates with fascinating and productive research areas of their own. Five decades of divalent carbon chemistry have provided us with a vast repertoire of new, unusual, and surprising reactions. Some of those reactions, once classified as exotic, have become standard methods in organic synthesis. These highly reactive carbene species have been harnessed and put to work to achieve difficult synthetic tasks other reactive intermediates cannot easily perform. The fruitful relationship between experiment and theory has pushed carbene chemistry further toward the direction of reaction control; that is, regio- and stereoselectivity in intra- and intermolecular addition and insertion reactions. The interplay between experiment and modern spectroscopy has led to the characterization of many carbenes that are crucial to both an understanding and further development of this field.




Contemporary Carbene Chemistry


Book Description

Presents the most innovative results in carbene chemistry, setting the foundation for new discoveries and applications The discovery of stable carbenes has reinvigorated carbene chemistry research, with investigators seeking to develop carbenes into new useful catalysts and ligands. Presenting the most innovative and promising areas of carbene research over the past decade, this book explores newly discovered structural, catalytic, and organometallic aspects of carbene chemistry, with an emphasis on new and emerging synthetic applications. Contemporary Carbene Chemistry features contributions from an international team of pioneering carbene chemistry researchers. Collectively, these authors have highlighted the most interesting and promising areas of investigation in the field. The book is divided into two parts: Part 1, Properties and Reactions of Carbenes, explores new findings on carbene stability, acid-base behavior, and catalysis. Carbenic structure and reactivity are examined in chapters dedicated to stable carbenes, carbodicarbenes, carbenes as guests in supramolecular hosts, tunneling in carbene and oxacarbene reactions, and ultrafast kinetics of carbenes and their excited state precursors. Theoretical concerns are addressed in chapters on computational methods and dynamics applied to carbene reactions. Part 2, Metal Carbenes, is dedicated to the synthetic dimensions of carbenes, particularly the reactions and catalytic properties of metal carbenes. The authors discuss lithium, rhodium, ruthenium, chromium, molybdenum, tungsten, cobalt, and gold. All the chapters conclude with a summary of the current situation, new challenges on the horizon, and promising new research directions. A list of key reviews and suggestions for further reading also accompanies every chapter. Each volume of the Wiley Series on Reactive Intermediates in Chemistry and Biology focuses on a specific reactive intermediate, offering a broad range of perspectives from leading experts that sets the stage for new applications and further discoveries.




Computational Organic Chemistry


Book Description

"[This book] collects together, largely for the first time, a series of chapters dedicated to all the ways in which molecular modeling/computational chemistry can impact organic chemistry." -Christopher J. Cramer, author of Essentials ofComputational Chemistry: Theories and Models Computational Organic Chemistry provides a practical overview of the ways in which computational modeling methods and applications can be used in organic chemistry to predict the structure and reactivity of organic molecules. After a concise survey of computational methods, the book presents in-depth case studies that show how various computational methods have provided critical insight into the nature of organic mechanisms. With a focus on methodologies, this unique resource: * Discusses simple molecular properties, pericyclic reactions, carbenes and radicals, anion chemistry, solvent effects, and more * Features sidebars that offer a personal look at some of the leading practitioners in the field * Conveys the strengths and limitations of each method, so that readers develop a feel for the correct "tool" to use in the context of a specific problem * Further informs readers with a supporting Web site that provides links to materials cited and features a blog that discusses and provides links to new relevant articles at www.trinity.edu/sbachrac/coc/ This is a great reference for practicing physical organic and computational chemists, as well as a thought-provoking textbook for graduate-level courses in computational chemistry and organic chemistry.




The Organometallic Chemistry of N-heterocyclic Carbenes


Book Description

The Organometallic Chemistry of N-heterocyclic Carbenes describes various aspects of N-heterocyclic Carbenes (NHCs) and their transition metal complexes at an entry level suitable for advanced undergraduate students and above. The book starts with a historical overview on the quest for carbenes and their complexes. Subsequently, unique properties, reactivities and nomenclature of the four classical NHCs derived from imidazoline, imidazole, benzimidazole and 1,2,4-triazole are elaborated. General and historically relevant synthetic aspects for NHCs, their precursors and complexes are then explained. The book continues with coverage on the preparation and characteristics of selected NHC complexes containing the most common metals in this area, i.e. Ni, Pd, Pt, Ag, Cu, Au, Ru, Rh and Ir. The book concludes with an overview and outlook on the development of various non-classical NHCs beyond the four classical types. Topics covered include: Stabilization, dimerization and decomposition of NHCs Stereoelectronic properties of NHCs and their evaluation Diversity of NHCs Isomers of NHC complexes and their identification NMR spectroscopic signatures of NHC complexes normal, abnormal and mesoionic NHCs The Organometallic Chemistry of N-heterocyclic Carbenes is an essential resource for all students and researchers interested in this increasingly important and popular field of research.




Carbene Chemistry


Book Description




Reactive Intermediate Chemistry


Book Description

Reactive Intermediate Chemistry presents a detailed and timely examination of key intermediates central to the mechanisms of numerous organic chemical transformations. Spectroscopy, kinetics, and computational studies are integrated in chapters dealing with the chemistry of carbocations, carbanions, radicals, radical ions, carbenes, nitrenes, arynes, nitrenium ions, diradicals, etc. Nanosecond, picosecond, and femtosecond kinetic realms are explored, and applications of current dynamics and electronic structure calculations are examined. Reactive Intermediate Chemistry provides a deeper understanding of contemporary physical organic chemistry, and will assist chemists in the design of new reactions for the efficient synthesis of pharmaceuticals, fine chemicals, and agricultural products. Among its features, this authoritative volume is: Edited and authored by world-renowned leaders in physical organic chemistry. Ideal for use as a primary or supplemental graduate textbook for courses in mechanistic organic chemistry or physical chemistry. Enhanced by supplemental reading lists and summary overviews in each chapter.




Advances in Photochemistry


Book Description

Setting the pace for progress and innovation . . . "[Provides] a wealth of information on frontier photochemistry . . . could easily serve as a definitive source of background information for future researchers." —Journal of the American Chemical Society "The overall quality of the series and the timeliness of selections and authors warrants continuation of the series by any library wishing to maintain a first-rate reference series to the literature." —Physics Today ADVANCES IN PHOTOCHEMISTRY More than a simple survey of the current literature, Advances in Photochemistry offers critical evaluations written by internationally recognized experts. These pioneering scientists offer unique and varied points of view of the existing data. Their articles are challenging as well as provocative and are intended to stimulate discussion, promote further research, and encourage new developments in the field.




Organic Synthesis


Book Description

The first two chapters provide an introduction to functional groups; these are followed by chapters reviewing basic organic transformations (e.g. oxidation, reduction). The book then looks at carbon-carbon bond formation reactions and ways to 'disconnect' a bigger molecule into simpler building blocks. Most chapters include an extensive list of questions to test the reader's understanding. There is also a new chapter outlining full retrosynthetic analyses of complex molecules which highlights common problems made by scientists.




Molecular Encapsulation


Book Description

The inclusion of small guest molecules within suitable host compounds results in constrained systems that imbue novel properties upon the incarcerated organic substrates. Supramolecular tactics are becoming widely employed and this treatise spotlights them. Often, the impact of encapsulation on product formation is substantial. The use of constrained systems offers the means to steer reactions along desired pathways. A broad overview of various supramolecular approaches aimed to manipulate chemical reactions are featured. The following topics are covered in detail: - general concepts governing the assembly of the substrate with the reaction vessel - preparation of molecular reactors - stabilization of reactive intermediates - reactions in water, in organic solvents, and in the solid state - photochemical reactions - reactions with unusual regioselectivity Molecular Encapsulation: Organic Reactions in Constrained Systems is an essential guide to the art of changing the outcome and the selectivity of a chemical reaction using nano-sized reaction vessels. It will find a place on the bookshelves of students and researchers working in the areas of supramolecular chemistry, nanotechnology, organic and pharmaceutical chemistry, and materials science as well.