Advances in Credit Risk Modeling and Management


Book Description

Credit risk remains one of the major risks faced by most financial and credit institutions. It is deeply connected to the real economy due to the systemic nature of some banks, but also because well-managed lending facilities are key for wealth creation and technological innovation. This book is a collection of innovative papers in the field of credit risk management. Besides the probability of default (PD), the major driver of credit risk is the loss given default (LGD). In spite of its central importance, LGD modeling remains largely unexplored in the academic literature. This book proposes three contributions in the field. Ye & Bellotti exploit a large private dataset featuring non-performing loans to design a beta mixture model. Their model can be used to improve recovery rate forecasts and, therefore, to enhance capital requirement mechanisms. François uses instead the price of defaultable instruments to infer the determinants of market-implied recovery rates and finds that macroeconomic and long-term issuer specific factors are the main determinants of market-implied LGDs. Cheng & Cirillo address the problem of modeling the dependency between PD and LGD using an original, urn-based statistical model. Fadina & Schmidt propose an improvement of intensity-based default models by accounting for ambiguity around both the intensity process and the recovery rate. Another topic deserving more attention is trade credit, which consists of the supplier providing credit facilities to his customers. Whereas this is likely to stimulate exchanges in general, it also magnifies credit risk. This is a difficult problem that remains largely unexplored. Kanapickiene & Spicas propose a simple but yet practical model to assess trade credit risk associated with SMEs and microenterprises operating in Lithuania. Another topical area in credit risk is counterparty risk and all other adjustments (such as liquidity and capital adjustments), known as XVA. Chataignier & Crépey propose a genetic algorithm to compress CVA and to obtain affordable incremental figures. Anagnostou & Kandhai introduce a hidden Markov model to simulate exchange rate scenarios for counterparty risk. Eventually, Boursicot et al. analyzes CoCo bonds, and find that they reduce the total cost of debt, which is positive for shareholders. In a nutshell, all the featured papers contribute to shedding light on various aspects of credit risk management that have, so far, largely remained unexplored.




Advanced Credit Risk Analysis and Management


Book Description

Credit is essential in the modern world and creates wealth, provided it is used wisely. The Global Credit Crisis during 2008/2009 has shown that sound understanding of underlying credit risk is crucial. If credit freezes, almost every activity in the economy is affected. The best way to utilize credit and get results is to understand credit risk. Advanced Credit Risk Analysis and Management helps the reader to understand the various nuances of credit risk. It discusses various techniques to measure, analyze and manage credit risk for both lenders and borrowers. The book begins by defining what credit is and its advantages and disadvantages, the causes of credit risk, a brief historical overview of credit risk analysis and the strategic importance of credit risk in institutions that rely on claims or debtors. The book then details various techniques to study the entity level credit risks, including portfolio level credit risks. Authored by a credit expert with two decades of experience in corporate finance and corporate credit risk, the book discusses the macroeconomic, industry and financial analysis for the study of credit risk. It covers credit risk grading and explains concepts including PD, EAD and LGD. It also highlights the distinction with equity risks and touches on credit risk pricing and the importance of credit risk in Basel Accords I, II and III. The two most common credit risks, project finance credit risk and working capital credit risk, are covered in detail with illustrations. The role of diversification and credit derivatives in credit portfolio management is considered. It also reflects on how the credit crisis develops in an economy by referring to the bubble formation. The book links with the 2008/2009 credit crisis and carries out an interesting discussion on how the credit crisis may have been avoided by following the fundamentals or principles of credit risk analysis and management. The book is essential for both lenders and borrowers. Containing case studies adapted from real life examples and exercises, this important text is practical, topical and challenging. It is useful for a wide spectrum of academics and practitioners in credit risk and anyone interested in commercial and corporate credit and related products.




Advanced Credit Risk Analysis


Book Description

Advanced Credit Analysis presents the latest and most advanced modelling techniques in the theory and practice of credit risk pricing and management. The book stresses the logic of theoretical models from the structural and the reduced-form kind, their applications and extensions. It shows the mathematical models that help determine optimal collateralisation and marking-to-market policies. It looks at modern credit risk management tools and the current structuring techniques available with credit derivatives.




Credit Risk


Book Description

Featuring contributions from leading international academics and practitioners, Credit Risk: Models, Derivatives, and Management illustrates how a risk management system can be implemented through an understanding of portfolio credit risks, a set of suitable models, and the derivation of reliable empirical results. Divided into six sectio




Introduction to Credit Risk Modeling


Book Description

Contains Nearly 100 Pages of New MaterialThe recent financial crisis has shown that credit risk in particular and finance in general remain important fields for the application of mathematical concepts to real-life situations. While continuing to focus on common mathematical approaches to model credit portfolios, Introduction to Credit Risk Modelin




Credit Risk Analytics


Book Description

The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.




Rating Based Modeling of Credit Risk


Book Description

In the last decade rating-based models have become very popular in credit risk management. These systems use the rating of a company as the decisive variable to evaluate the default risk of a bond or loan. The popularity is due to the straightforwardness of the approach, and to the upcoming new capital accord (Basel II), which allows banks to base their capital requirements on internal as well as external rating systems. Because of this, sophisticated credit risk models are being developed or demanded by banks to assess the risk of their credit portfolio better by recognizing the different underlying sources of risk. As a consequence, not only default probabilities for certain rating categories but also the probabilities of moving from one rating state to another are important issues in such models for risk management and pricing. It is widely accepted that rating migrations and default probabilities show significant variations through time due to macroeconomics conditions or the business cycle. These changes in migration behavior may have a substantial impact on the value-at-risk (VAR) of a credit portfolio or the prices of credit derivatives such as collateralized debt obligations (D+CDOs). In Rating Based Modeling of Credit Risk the authors develop a much more sophisticated analysis of migration behavior. Their contribution of more sophisticated techniques to measure and forecast changes in migration behavior as well as determining adequate estimators for transition matrices is a major contribution to rating based credit modeling. Internal ratings-based systems are widely used in banks to calculate their value-at-risk (VAR) in order to determine their capital requirements for loan and bond portfolios under Basel II One aspect of these ratings systems is credit migrations, addressed in a systematic and comprehensive way for the first time in this book The book is based on in-depth work by Trueck and Rachev




Advanced Financial Risk Management


Book Description

Practical tools and advice for managing financial risk, updated for a post-crisis world Advanced Financial Risk Management bridges the gap between the idealized assumptions used for risk valuation and the realities that must be reflected in management actions. It explains, in detailed yet easy-to-understand terms, the analytics of these issues from A to Z, and lays out a comprehensive strategy for risk management measurement, objectives, and hedging techniques that apply to all types of institutions. Written by experienced risk managers, the book covers everything from the basics of present value, forward rates, and interest rate compounding to the wide variety of alternative term structure models. Revised and updated with lessons from the 2007-2010 financial crisis, Advanced Financial Risk Management outlines a framework for fully integrated risk management. Credit risk, market risk, asset and liability management, and performance measurement have historically been thought of as separate disciplines, but recent developments in financial theory and computer science now allow these views of risk to be analyzed on a more integrated basis. The book presents a performance measurement approach that goes far beyond traditional capital allocation techniques to measure risk-adjusted shareholder value creation, and supplements this strategic view of integrated risk with step-by-step tools and techniques for constructing a risk management system that achieves these objectives. Practical tools for managing risk in the financial world Updated to include the most recent events that have influenced risk management Topics covered include the basics of present value, forward rates, and interest rate compounding; American vs. European fixed income options; default probability models; prepayment models; mortality models; and alternatives to the Vasicek model Comprehensive and in-depth, Advanced Financial Risk Management is an essential resource for anyone working in the financial field.




Credit Risk Management


Book Description

This book introduces to basic and advanced methods for credit risk management. It covers classical debt instruments and modern financial markets products. The author describes not only standard rating and scoring methods like Classification Trees or Logistic Regression, but also less known models that are subject of ongoing research, like e.g. Support Vector Machines, Neural Networks, or Fuzzy Inference Systems. The book also illustrates financial and commodity markets and analyzes the principles of advanced credit risk modeling techniques and credit derivatives pricing methods. Particular attention is given to the challenges of counterparty risk management, Credit Valuation Adjustment (CVA) and the related regulatory Basel III requirements. As a conclusion, the book provides the reader with all the essential aspects of classical and modern credit risk management and modeling.




Credit Risk Modeling


Book Description

Credit risk is today one of the most intensely studied topics in quantitative finance. This book provides an introduction and overview for readers who seek an up-to-date reference to the central problems of the field and to the tools currently used to analyze them. The book is aimed at researchers and students in finance, at quantitative analysts in banks and other financial institutions, and at regulators interested in the modeling aspects of credit risk. David Lando considers the two broad approaches to credit risk analysis: that based on classical option pricing models on the one hand, and on a direct modeling of the default probability of issuers on the other. He offers insights that can be drawn from each approach and demonstrates that the distinction between the two approaches is not at all clear-cut. The book strikes a fruitful balance between quickly presenting the basic ideas of the models and offering enough detail so readers can derive and implement the models themselves. The discussion of the models and their limitations and five technical appendixes help readers expand and generalize the models themselves or to understand existing generalizations. The book emphasizes models for pricing as well as statistical techniques for estimating their parameters. Applications include rating-based modeling, modeling of dependent defaults, swap- and corporate-yield curve dynamics, credit default swaps, and collateralized debt obligations.