Advances in Electronic Materials for Clean Energy Conversion and Storage Applications


Book Description

Advances in Electronic Materials for Clean Energy Conversion and Storage Applications reviews green synthesis and fabrication techniques of various electronic materials and their derivatives for applications in photovoltaics. The book investigates recent advances, progress and issues of photovoltaic-based research, including organic, hybrid, dye-sensitized, polymer, and quantum dot-based solar cells. There is a focus on applications for clean energy and storage in the book. Clean energy is defined as energy derived from renewable resources or zero-emission sources and natural processes that are regenerative and sustainable resources such as biomass, geothermal energy, hydropower, solar and wind energy. Materials discussed include nanomaterials, nanocomposites, polymers, and polymer-composites. Advances in clean energy conversion and energy storage devices are also reviewed thoroughly based on recent research and developments such as supercapacitors, batteries etc. Reliable methods to characterize and analyze these materials systems and devices are emphasized throughout the book. Important information on synthesis and analytical chemistry of these important systems are reviewed, but also material science methods to investigate optical properties of carbon-nanomaterials, metal oxide nanomaterials and their nanocomposites. - Reviews the latest advances in electronic materials synthesis, fabrication and application in energy - Discusses green, cost-effective, simple and large-scale production of electronic materials - Includes critical materials and device characterization techniques that enhance our understanding of materials' properties and measure device performance




Advances in Electronic Materials for Clean Energy Conversion and Storage Applications


Book Description

Advances in Electronic Materials for Clean Energy Conversion and Storage Applications reviews green synthesis and fabrication techniques of various electronic materials and their derivatives for applications in photovoltaics. The book investigates recent advances, progress and issues of photovoltaic-based research, including organic, hybrid, dye-sensitized, polymer, and quantum dot-based solar cells. There is a focus on applications for clean energy and storage in the book. Clean energy is defined as energy derived from renewable resources or zero-emission sources and natural processes that are regenerative and sustainable resources such as biomass, geothermal energy, hydropower, solar and wind energy. Materials discussed include nanomaterials, nanocomposites, polymers, and polymer-composites. Advances in clean energy conversion and energy storage devices are also reviewed thoroughly based on recent research and developments such as supercapacitors, batteries etc. Reliable methods to characterize and analyze these materials systems and devices are emphasized throughout the book. Important information on synthesis and analytical chemistry of these important systems are reviewed, but also material science methods to investigate optical properties of carbon-nanomaterials, metal oxide nanomaterials and their nanocomposites. Reviews the latest advances in electronic materials synthesis, fabrication and application in energy Discusses green, cost-effective, simple and large-scale production of electronic materials Includes critical materials and device characterization techniques that enhance our understanding of materials' properties and measure device performance




Emerging Materials for Energy Conversion and Storage


Book Description

Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field




Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems


Book Description

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.




Sustainable Materials and Green Processing for Energy Conversion


Book Description

Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices




Materials for Sustainable Energy Applications


Book Description

The impending energy crisis brought on by the running out of finite and non-homogenously distributed fossil fuel reserves and the worldwide increase in energy demand has prompted vast research in the development of sustainable energy technologies in the last few decades. However, the efficiency of most of these new technologies is relatively small and therefore it needs to be increased to eventually replace conventional technologies based on fossil fuels. The required efficiency increase primarily relies on the ability to improve the performance of the functional materials which are at the heart of these technologies. The purpose of this book is to give a unified and comprehensive presentation of the fundamentals and the use and design of novel materials for efficient sustainable energy applications, such as conversion, storage, transmission, and consumption. The book presents general coverage of the use and design of advanced materials for sustainable energy applications. Thus, the book addresses all the relevant aspects, such as materials for energy conversion, storage, transmission, and consumption.




Electrochemical Energy


Book Description

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.




Materials for Sustainable Energy


Book Description

The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.




Clean Energy Materials


Book Description




Advanced Materials for Clean Energy


Book Description

Research for clean energy is booming, driven by the rapid depletion of fossil fuels and growing environmental concerns as well as the increasing growth of mobile electronic devices. Consequently, various research fields have focused on the development of high-performance materials for alternative energy technologies.Advanced Materials for Clean Ene