Advances in Experimental and Computational Rheology, Volume II


Book Description

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.




Advances in Experimental and Computational Rheology, Volume II.


Book Description

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spreading an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. Following a successful first volume, we are now launching this second volume to continue to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems, and composites) and processes.




Advances in Experimental and Computational Rheology


Book Description

This book is a printed edition of the Special Issue Advances in Experimental and Computational Rheology that was published in Fluids




Advances in Experimental and Computational Rheology


Book Description

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spread an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. This Special Issue aims to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems and composites) and processes. This Special Issue will comprise, not only original research papers, but also review articles.




Computational Rheology


Book Description

Modern day high-performance computers are making available to 21st-century scientists solutions to rheological flow problems of ever-increasing complexity. Computational rheology is a fast-moving subject — problems which only 10 years ago were intractable, such as 3D transient flows of polymeric liquids, non-isothermal non-Newtonian flows or flows of highly elastic liquids through complex geometries, are now being tackled owing to the availability of parallel computers, adaptive methods and advances in constitutive modelling.Computational Rheology traces the development of numerical methods for non-Newtonian flows from the late 1960's to the present day. It begins with broad coverage of non-Newtonian fluids, including their mathematical modelling and analysis, before specific computational techniques are discussed. The application of these techniques to some important rheological flow problems of academic and industrial interest is then treated in a detailed and up-to-date exposition. Finally, the reader is kept abreast of topics at the cutting edge of research in computational applied mathematics, such as adaptivity and stochastic partial differential equations.All the topics in this book are dealt with from an elementary level and this makes the text suitable for advanced undergraduate and graduate students, as well as experienced researchers from both the academic and industrial communities.




Recent Advances in Computational and Experimental Mechanics, Vol II


Book Description

This book (Vol. II) presents select proceedings of the first Online International Conference on Recent Advances in Computational and Experimental Mechanics (ICRACEM 2020) and focuses on theoretical, computational and experimental aspects of solid and fluid mechanics. Various topics covered are computational modelling of extreme events; mechanical modelling of robots; mechanics and design of cellular materials; mechanics of soft materials; mechanics of thin-film and multi-layer structures; meshfree and particle based formulations in continuum mechanics; multi-scale computations in solid mechanics, and materials; multiscale mechanics of brittle and ductile materials; topology and shape optimization techniques; acoustics including aero-acoustics and wave propagation; aerodynamics; dynamics and control in micro/nano engineering; dynamic instability and buckling; flow-induced noise and vibration; inverse problems in mechanics and system identification; measurement and analysis techniques in nonlinear dynamic systems; multibody dynamical systems and applications; nonlinear dynamics and control; stochastic mechanics; structural dynamics and earthquake engineering; structural health monitoring and damage assessment; turbomachinery noise; vibrations of continuous systems, characterization of advanced materials; damage identification and non-destructive evaluation; experimental fire mechanics and damage; experimental fluid mechanics; experimental solid mechanics; measurement in extreme environments; modal testing and dynamics; experimental hydraulics; mechanism of scour under steady and unsteady flows; vibration measurement and control; bio-inspired materials; constitutive modelling of materials; fracture mechanics; mechanics of adhesion, tribology and wear; mechanics of composite materials; mechanics of multifunctional materials; multiscale modelling of materials; phase transformations in materials; plasticity and creep in materials; fluid mechanics, computational fluid dynamics; fluid-structure interaction; free surface, moving boundary and pipe flow; hydrodynamics; multiphase flows; propulsion; internal flow physics; turbulence modelling; wave mechanics; flow through porous media; shock-boundary layer interactions; sediment transport; wave-structure interaction; reduced-order models; turbo-machinery; experimental hydraulics; mechanism of scour under steady and unsteady flows; applications of machine learning and artificial intelligence in mechanics; transport phenomena and soft computing tools in fluid mechanics. The contents of these two volumes (Volumes I and II) discusses various attributes of modern-age mechanics in various disciplines, such as aerospace, civil, mechanical, ocean engineering and naval architecture. The book will be a valuable reference for beginners, researchers, and professionals interested in solid and fluid mechanics and allied fields.




Rheology - Volume II


Book Description

Rheology is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Rheology is the study of the flow of matter. It is classified as a physics discipline and focuses on substances that do not maintain a constant viscosity or state of flow. That can involve liquids, soft solids and solids that are under conditions that cause them to flow. It applies to substances which have a complex molecular structure, such as muds, sludges, suspensions, polymers and other glass formers, as well as many foods and additives, bodily fluids and other biological materials. The theme on Rheology focuses on five main areas, namely, basic concepts of rheology; rheometry; rheological materials, rheological processes and theoretical rheology. Of course, many of the chapters contain material from more than one general area. Rheology is an interdisciplinary subject which embraces many aspects of mathematics, physics, chemistry, engineering and biology. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.




Rheology


Book Description

At the VIIth International Congress on Rheology, which was held in Goteborg in 1976, Proceedings were for the first time printed in advance and distributed to all participants at the time of the Congress. Although of course we Italians would be foolish to even try to emulate our Swedish friends as far as efficiency of organization is concerned, we decided at the very beginning that, as far as the Proceedings were concerned, the VIIIth International Congress on Rheology in Naples would follow the standards of time liness set by the Swedish Society of Rheology. This book is the result we have obtained. We wish to acknowledge the cooperation of Plenum Press in producing it within the very tight time schedule available. Every four years, the International Congress on Rheology represents the focal point where all rheologists meet, and the state of the art is brought up to date for everybody interested; the Proceedings represent the written record of these milestones of scientific progress in rheology. We have tried to make use of the traditions of having invited lectures, and of leaving to the organizing committee the freedom to choose the lecturers as they see fit, in order to collect a group of invited lectures which gives as broad as possible a landscape of the state of the art in every relevant area of rheology. The seventeen invited lectures are collected in the first volume of the proceedings.




Computational Rheology


Book Description

This work traces the development of numerical methods for non-Newtonian flows from the late 1960s to 2001. It begins with broad coverage of non-Newtonian fluids, including their mathematical modelling and analysis, and then specific computational techniques are discussed.




Engineering Rheology


Book Description

This book sets out to provide a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. After an introductory survey of the field and a review of basic continuum mechanics, the radical differences between elongational and shear behaviour are shown. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to useful mathematical desriptions of materials for engineering applications. As examples of nearly-viscometric and nearly-elongational flows, there is a discussion of lubrication and related shearing flows, and fibre- spinning and film-blowing respectively. A long chapter is devoted to the important new field of computational rheology, and this is followed by chapters on stability and turbulence and the all-important temperature effects in flow. This new edition contains much new material not available in book form elsewhere-for example wall slip, suspension rheology, computational rheology and new results in stability theory.