Damage and Fracture Mechanics


Book Description

The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.




Advances in Fracture and Damage Mechanics IX


Book Description

Selected, peer reviewed papers from the 9th International Conference on Fracture and Damage Mechanics, FDM 2010, 20-22 September, 2009, Nagasaki, Japan




Continuum Damage Mechanics


Book Description

Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.




Continuum Damage and Fracture Mechanics


Book Description

This textbook offers readers an introduction to fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplementary problems featured in the book




Elementary engineering fracture mechanics


Book Description

When asked to start teaching a course on engineering fracture mechanics, I realized that a concise textbook, giving a general oversight of the field, did not exist. The explanation is undoubtedly that the subject is still in a stage of early development, and that the methodologies have still a very limited applicability. It is not possible to give rules for general application of fracture mechanics concepts. Yet our comprehension of cracking and fracture beha viour of materials and structures is steadily increasing. Further developments may be expected in the not too distant future, enabling useful prediction of fracture safety and fracture characteristics on the basis of advanced fracture mechanics procedures. The user of such advanced procedures m\lst have a general understanding of the elementary concepts, which are provided by this volume. Emphasis was placed on the practical application of fracture mechanics, but it was aimed to treat the subject in a way that may interest both metallurgists and engineers. For the latter, some general knowledge of fracture mechanisms and fracture criteria is indispensable for an apprecia tion of the limita tions of fracture mechanics. Therefore a general discussion is provided on fracture mechanisms, fracture criteria, and other metal lurgical aspects, without going into much detail. Numerous references are provided to enable a more detailed study of these subjects which are still in a stage of speculative treatment.




Advanced Fracture Mechanics and Structural Integrity


Book Description

Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study.The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.




Fracture Mechanics


Book Description

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results




Advances in Mechanical Behaviour, Plasticity and Damage


Book Description

Since its inception in 1991, EUROMAT has been held each year on behalf of the Federation of European Materials Societies (FEMS), and alternates between general and topical prospectives. This year's theme, Advances in Mechanical Behaviour, Plasticity and Damage, was proposed by the Societe Francaise de Metallurgie et de Materiaux (SF2M) to FEMS.This publication contains a selection of papers presented at the EUROMAT 2000 Conference, held in Tours, France on 7-9 November 2000. The aim of this Conference was to concentrate mainly on recent advances made in the investigation of the relationship between microstructures of materials and their mechanical behaviour; including, fundamentals, modelling and applications. Encompassed in the Conference's aim is the nurturing of the synergistic effect between the theoretical and applied areas in this field. This was achieved by addressing important basic and practical aspects of the mechanical behaviour and damage of materials whilst also providing significant links between various complementary approaches. All kinds of materials are covered and topics that were covered include the mechanics of solid polymers, microstructurs and micromechanisms, and the collective behavior of defects which looks at the interaction of multiple defects in a system.




Advances in Machinery, Materials Science and Engineering Application IX


Book Description

New engineering materials, techniques and applications are constantly being researched and developed, and keeping up to speed with the latest advances is crucial for engineers if they are to successfully address the challenges they face in their work. This book presents the selected proceedings of MMSE2023, the 9th International Conference on Advances in Machinery, Materials Science and Engineering Applications, jointly organized by the SAE-Supmeca, France and China University of Geosciences (Wuhan) and held on 22 and 23 July 2023 in Wuhan, China. For the past 12 years, this annual conference has collated recent advances and experiences, identified emerging trends and provided a platform for participants from academia and industry to exchange information and views, helping to address the world’s machinery and engineering challenges. The book contains 4 sections: mechanical engineering, material science and manufacturing technology; electrical engineering, automation and control; modeling, simulation and optimization techniques in engineering; and advanced engineering technologies and applications. A total of 241 submissions were received for MMSE2023, of which 151 papers were selected for the conference and for publication by means of a rigorous international peer-review process. These papers present exciting ideas and methods that will open novel research directions for different communities. Offering a current overview of the latest research and applications in machinery and materials-science engineering, the book will be of interest to all those working in the field.




Application of Fracture Mechanics to Cementitious Composites


Book Description

Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.