Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa


Book Description

The book focuses on the principles and practices of tropical maize improvement with special emphasis on early and extra-early maize to feed the increasing population in Sub-Saharan Africa. It highlights the similarities and differences between results obtained in temperate regions of the world and WCA in terms of corroboration or refutation of genetic principles and theory of maize breeding. The book is expected to be of great interest to maize breeders, advanced undergraduates, graduate students, professors and research scientists in the national and international research institutes all over the world, particularly Sub-Saharan Africa. It will also serve as a useful reference for agricultural extension and technology transfer systems, Non-governmental Organizations (NGOs) and Community-Based Organizations (CBOs), seed companies and community-based seed enterprises, policy makers, and all those who are interested in generating wealth from agriculture and alleviating hunger and poverty in Sub-Saharan Africa.




Plant Biodiversity and Genetic Resources


Book Description

The papers included in this Special Issue address a variety of important aspects of plant biodiversity and genetic resources, including definitions, descriptions, and illustrations of different components and their value for food and nutrition security, breeding, and environmental services. Furthermore, comprehensive information is provided regarding conservation approaches and techniques for plant genetic resources, policy aspects, and results of biological, genetic, morphological, economic, social, and breeding-related research activities. The complexity and vulnerability of (plant) biodiversity and its inherent genetic resources, as an integral part of the contextual ecosystem and the human web of life, are clearly demonstrated in this Special Issue, and for several encountered problems and constraints, possible approaches or solutions are presented to overcome these.




Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses


Book Description

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.




Heat Stress In Food Grain Crops: Plant Breeding and Omics Research


Book Description

Heat Stress In Food Grain Crops: Plant Breeding and Omics Research is a timely compilation of advanced research on heat stress affecting crop yield, plant growth & development of common food grain and cereal crops. Chapters in the book cover several aspects of crop science including the identification of potential gene donors for heat tolerance, physiological mechanisms of adaptation to heat stress, the use of conventional and modern tools of breeding for imparting tolerance against terminal temperature stress and precise mapping of heat tolerant QTLs through biparental and genome wide association mapping. The use of genomics and phenomics methods is focused on through chapters dedicated to important crops such as groundnut, pearl millet, maize, chickpea, mungbean and wheat. Authors of the respective chapters explain the importance of harnessing a diverse crop genepool for sustaining crop production under conditions of increasing heat stress. Readers will be able to understand the relevance of functional genomics in elucidating candidate genes and their regulatory functions contributing to heat tolerance




Molecular Marker Technology for Crop Improvement


Book Description

Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.







Arthropod Management and Landscape Considerations in Large-Scale Agroecosystems


Book Description

For large-scale agroecosystems, patterns of pest population increases (graded increases or abrupt outbreaks) and declines (graded suppression or abrupt crashes) vary considerably and are influenced by factors within crop fields and across broader landscape scales. Better understanding of pest population dynamics and the implications of spatial interactions on the function and development of pest management approaches are the main themes of this important book. The book builds from a 60+ year history of field-based pest management by focusing on the drivers of pest management in large-scale agroecosystems and the landscape-scale processes that affect these drivers and contribute to variation in pest outbreaks and suppression. These drivers include abiotic and biotic influences such as weather, spatial composition and arrangement of landscape elements, and widely applied managed inputs such as planting and crop rotation schedules, crop varietal selection, and land and soil conservation efforts. The book introduces general concepts, opportunities, and challenges of arthropod management in large-scale agroecosystems. The book is essential reading for researchers in applied entomology and ecology and for pest management practitioners.




Fundamentals of Field Crop Breeding


Book Description

This book is an advanced textbook and a reference book for the post-graduate plant-breeding students and the plant breeders. It consolidates fundamental concepts and also the latest advances in plant-breeding practices including development in crop genomics. It contains crop wise explanation on origin, reproduction, genetics of yield contributing traits, biotic and abiotic stresses, nutritional improvement and crop specific plant-breeding procedures and techniques. The chapters are planned to describe crop-focused breeding procedure for the major crop plants as per their economic importance. The recent developments in breeding of field crops have been reported. The recent progress made in mapping traits of economic importance has been critically reviewed for each crop. The progress made in markers assisted selected in few crops has been summarized. This book bridges the knowledge gap and bring to the researchers and students information on modern breeding tools for developing biotic and abiotic stress tolerant, climate resilient and micronutrient rich varieties of field crops. The chapters in book are contributed by experienced Plant Breeders.




Genomic Designing for Biotic Stress Resistant Cereal Crops


Book Description

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.




Cereal Grains


Book Description

Over the past 50 years, cereals such as maize, rice, wheat, sorghum, and barley have emerged as rapidly evolving crops because of new technologies and advances in agronomy, breeding, biotechnology, genetics, and so on. Population growth and climate change have led to new challenges, among which are feeding the growing global population and mitigating adverse effects on the environment. One way to deal with these issues is through sustainable cereal production. This book discusses ways to achieve sustainable production of cereals via agronomy, breeding, transcriptomics, proteomics, and metabolomics. Chapters review research, examine challenges, and present prospects in the field. This volume is an excellent resource for students, researchers, and scientists interested in and working in the area of sustainable crop production.