Advances in Machine Learning Applications in Software Engineering


Book Description

"This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field"--Provided by publisher.




Advances in Machine Intelligence and Computer Science Applications


Book Description

This book encloses latest and advanced researches on artificial intelligence and its applications in computer science. It is an interesting book that aims to help students, researchers, industrialists, and policymakers understand, promote, and synthesize innovative solutions and think of new ideas with the application of artificial intelligence concepts. It also allows to know the existing scientific works and contributions in the literature. This book identifies original research in new directions and advances focused on multidisciplinary areas and closely related to the use of artificial intelligence in applications of computer science, communication, and technology. The present book contains selected and extended high-quality papers of the 1st international conference on Machine Intelligence and Computer Science Applications (ICMICSA’2022). It is the result of a reviewed, evaluated, and presented work in ICMICSA’2022 held on November 28–29, 2022, in Khouribga, Morocco.




Machine Learning


Book Description

In chapter one, Lei Jia, PhD and Hua Gao, PhD analyze machine learning applications in small molecule and macromolecule drug discovery and development while comparing the similarities and differences between the two. They also examine their advantages and limitations with the intent to encourage further creative machine learning applications in drug discovery and development. During chapter two, Oscar Claveria, Enric Monte, and Salvador Torra present a study on the extrapolative performance of several machine learning models in a multiple-input multiple-output setting that permits cross-correlation between the inputs. Bojan Ploj, Germano Resconi, and Ali Yaghoubi parallel the solution of a system by logic gates and by a neural network, in which considerations are computed by the designated one step method during chapter three. In chapter four, Loris Nannia, Nicolò Zaffonatoa, Christian Salvatoreb, Isabella Castiglionib, and the Alzheimers Disease Neuroimaging Initiative propose a method that could aid in the early diagnosis of Alzheimers disease. Afterwards, F. Dornaika and I. Kamal Aldine present and experimentally assess two non-linear data self-representativeness coding schemes based on Hilbert space and column generation. Lastly, Christos Chrysoulas, Grigorios Kalliatakis, and Georgios Stamatiadis give an overview of Apache Hadoop, an open-source software framework used to distribute storage and process big data using the MapReduce programming model.




Empowering Artificial Intelligence Through Machine Learning


Book Description

This new volume, Empowering Artificial intelligence Through Machine Learning: New Advances and Applications, discusses various new applications of machine learning, a subset of the field of artificial intelligence. Artificial intelligence is considered to be the next-big-game changer in research and technology, The volume looks at how computing has enabled machines to learn, making machine and tools become smarter in many sectors, including science and engineering, healthcare, finance, education, gaming, security, and even agriculture, plus many more areas. Topics include techniques and methods in artificial intelligence for making machines intelligent, machine learning in healthcare, using machine learning for credit card fraud detection, using artificial intelligence in education using gaming and automatization with courses and outcomes mapping, and much more. The book will be valuable to professionals, faculty, and students in electronics and communication engineering, telecommunication engineering, network engineering, computer science and information technology.




Machine Learning and Deep Learning in Real-Time Applications


Book Description

Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.




Applications of Artificial Intelligence in Process Systems Engineering


Book Description

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering




Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities


Book Description

Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.




Advances of Machine Learning in Clean Energy and the Transportation Industry


Book Description

This book presents the latest research in the field of machine learning, discussing the real-world application problems associated with new innovative renewable energy methodologies as well as cutting edge technologies in the transport industry. The requirements and demands of problem solving have been increasing exponentially, and new artificial intelligence and machine learning technologies have reduced the scope of data coverage worldwide. Recent advances in data technology (DT) have contributed to reducing the gaps in the coverage of domains around the globe. Attention to clean energy in recent decades has been growing exponentially. This is mainly due to a decrease in the cost of both installed capacity of converters and a decrease in the cost of generated energy. Such successes were achieved thanks to the improvement of modern technologies for the production of converters, an increase in the efficiency of using incoming energy, optimisation of the operation of converters and analysis of data obtained during the operation of systems with the possibility of planning production. The use of clean energy plays an important role in the transportation industry, where technologies are also being improved from year to year - the transportation industry is growing, and machinery and systems are becoming more autonomous and robotic, where it is no longer possible to do without complex intelligent computing, machine learning optimisation, planning and working with large amounts of data. The book is a valuable reference work for researchers in the fields of renewable energy, computer science and engineering with a particular focus on machine learning and intelligent optimization as well as for postgraduates, managers, economists and decision makers, policy makers, government officials, industrialists and practicing scientists and engineers as well compassionate global decision makers. Topics include: Machine learning, Quantum Optimization, Modern Technology in Transport Industry, Innovative Technologies in Transport Education, Systems Based on Renewable Energy Conversion, Business Process Models and Applications in Renewable Energy, Clean Energy, and Climate Change.




Advanced Artificial Intelligence


Book Description

Artificial intelligence is a branch of computer science and a discipline in the study of machine intelligence, that is, developing intelligent machines or intelligent systems imitating, extending and augmenting human intelligence through artificial means and techniques to realize intelligent behavior.Advanced Artificial Intelligence consists of 16 chapters. The content of the book is novel, reflects the research updates in this field, and especially summarizes the author's scientific efforts over many years. The book discusses the methods and key technology from theory, algorithm, system and applications related to artificial intelligence. This book can be regarded as a textbook for senior students or graduate students in the information field and related tertiary specialities. It is also suitable as a reference book for relevant scientific and technical personnel.




Advanced Machine Learning Technologies and Applications


Book Description

This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.