Advances in Microstrip and Printed Antennas


Book Description

Lee-Antennas-044210 The latest research results and important topics driving the development of microstrip and printed antennas Keeping abreast of current research topics and results in a field as dynamic as microstrip and printed antennas is a challenge for graduate students, researchers, and practicing engineers alike-theoretical and experimental advances since 1989 have quickly outdated existing literature on the subject. This invaluable reference provides the latest information on conventional antenna topics, comprehensive accounts of new research topics, updated research results, and summaries of future trends. Advances in Microstrip and Printed Antennas is a comprehensive, up-to-date presentation of the research that is propelling these antennas into an ever-widening array of applications, including potential uses in radar and communication systems. Featuring contributions by leading researchers and supplemented with extensive illustrations, this book: * Covers recent advances in probe-fed and aperture-coupled microstrip antennas, microstrip arrays, and dual and circularly polarized planar antennas * Examines the development of CAD formulas for the rectangular patch * Explores the potential for multifunction printed antennas, new high-temperature superconducting materials, active microstrip antennas, and tapered slot printed antennas * Discusses the finite-difference time-domain method of analysis * Examines competing dielectric resonator antenna technology * Includes design data and an extensive bibliography




Microstrip and Printed Antennas


Book Description

This book focuses on new techniques, analysis, applications and future trends of microstrip and printed antenna technologies, with particular emphasis to recent advances from the last decade Attention is given to fundamental concepts and techniques, their practical applications and the future scope of developments. Several topics, essayed as individual chapters include reconfigurable antenna, ultra-wideband (UWB) antenna, reflectarrays, antennas for RFID systems and also those for body area networks. Also included are antennas using metamaterials and defected ground structures (DGSs). Essential aspects including advanced design, analysis and optimization techniques based on the recent developments have also been addressed. Key Features: Addresses emerging hot topics of research and applications in microstrip and printed antennas Considers the fundamental concepts, techniques, applications and future scope of such technologies Discusses modern applications such as wireless base station to mobile handset, satellite earth station to airborne communication systems, radio frequency identification (RFID) to body area networks, etc. Contributions from highly regarded experts and pioneers from the US, Europe and Asia This book provides a reference for R&D researchers, professors, practicing engineers, and scientists working in these fields. Graduate students studying/working on related subjects will find this book as a comprehensive literature for understanding the present and future trends in microstrip and printed antennas.




Microstrip and Printed Antenna Design


Book Description

Offering extensive coverage of microstrip antennas, from rectangular and circular to broadband and dual-band, this text gives a complete introduction to useful designs and the implementation aspects of these types of antennas.




Advancement in Microstrip Antennas with Recent Applications


Book Description

The book discusses basic and advanced concepts of microstrip antennas, including design procedure and recent applications. Book topics include discussion of arrays, spectral domain, high Tc superconducting microstrip antennas, optimization, multiband, dual and circular polarization, microstrip to waveguide transitions, and improving bandwidth and resonance frequency. Antenna synthesis, materials, microstrip circuits, spectral domain, waveform evaluation, aperture coupled antenna geometry and miniaturization are further book topics. Planar UWB antennas are widely covered and new dual polarized UWB antennas are newly introduced. Design of UWB antennas with single or multi notch bands are also considered. Recent applications such as, cognitive radio, reconfigurable antennas, wearable antennas, and flexible antennas are presented. The book audience will be comprised of electrical and computer engineers and other scientists well versed in microstrip antenna technology.




Practical Microstrip and Printed Antenna Design


Book Description

This comprehensive resource presents antenna fundamentals balanced with the design of printed antennas. Over 70 antenna projects, along with design dimensions, design flows and antenna performance results are discussed, including antennas for wireless communication, 5G antennas and beamforming. Examples of smartphone antennas, MIMO antennas, aerospace and satellite remote sensing array antennas, automotive antennas and radar systems and many more printed antennas for various applications are also included. These projects include design dimensions and parameters that incorporate the various techniques used by industries and academia. This book is intended to serve as a practical microstrip and printed antenna design guide to cover various real-world applications. All Antenna projects discussed in this book are designed, analyzed and simulated using full-wave electromagnetic solvers. Based on several years of the author’s research in antenna design and development for RF and microwave applications, this book offers an in-depth coverage of practical printed antenna design methodology for modern applications.




Microstrip Antenna Design for Wireless Applications


Book Description

This book focuses on recent advances in the field of microstrip antenna design and its applications in various fields including space communication, mobile communication, wireless communication, medical implants and wearable applications. Scholars as well as researchers and those in the electronics/ electrical/ instrumentation engineering fields will benefit from this book. The book shall provides the necessary literature and techniques using which to assist students and researchers would design antennas for the above- mentioned applications and will ultimately enable users to take measurements in different environments. It is intended to help scholars and researchers in their studies, by enhancing their the knowledge and skills in on the latest applications of microstrip antennas in the world of communications such as world like IoT, D2D, satellites and wearable devices, to name a few. FEATURES Addresses the complete functional framework workflow in printed antenna design systems Explores the basic and high-level concepts, including advanced aspects in planer design issues, thus serving as a manual for those in the the industry while also assisting beginners Provides the latest techniques used for antennas in terms of structure, defected ground, MIMO and fractal designs Discusses case studies related to data-intensive technologies in microchip antennas in terms of the most recent applications and similar uses for the Internet of Things and device-to-device communication




Microstrip Antenna


Book Description

In the past few years, the concept of creating microwave antennas using microstrip has attracted increasing attention and viable practical designs are now emerging. The purpose of this monograph is to present the reader with an appreciation of the underlying physical action, up-to-date theoretical treatments, useful antenna design approaches and the overall state-of-the-art situation. The emphasis is on antenna engineering design, but to achieve this goal it has been necessary to delve into the behaviour of microstrip in a much wider sense and also include aspects of electromagnetic analysis. As a consequence, the monograph will also be of interest to microstrip circuit designers and to some extent those seeking electromagnetic problems of a challenging nature. The astronomical progress in miniaturising and integrating electronic circuits in the past decade has recently crerated a positive demand for a new generation of antenna systems. In principle, microstrip antennas are thin planar configurations that are leightweight, low cost, easy to manufacture and can be made conformal with the surfaces of vehicles, missiles etc. The compatibility of microstrip antennas with integrated electronics is another great advantage. However, the microstrip wavetrapping effects inhibit the radiation mechanism and must be taken into account in antenna design. Wave-trapping effects in substrates involve the study of surface waves and discontinuities in open waveguide structures. The microstrip antenna designer must therefore encompass many more effects than previously considered by microstrip circuit designers. It is for these reasons that the scope of this monograph is necessarily somewhat wider than the title may suggest. The ten chapters are a blend of introductory, practical and theoretical treatments and likely future developments are also highlighted. A good selection of past and current references are given and each chapter concludes with a helpful summary comment.




Microstrip Patch Antennas


Book Description

Microstrip patch antennas have become the favorite of antenna designers because of its versatility and advantages of planar profile, ease of fabrication, compatibility with integrated circuit technology, and conformability with a shaped surface. As there is currently an urgent need for graduate students and practicing engineers to gain an in-depth understanding of this subject, this book was written with this purpose in mind. The authors are IEEE Fellows who have made significant contributions to their fields of expertise. Professor K F Lee was the recipient of the 2009 John Kraus Antenna Award of the IEEE Antennas and Propagation Society.




Mutual Coupling Between Antennas


Book Description

Mutual Coupling Between Antennas A guide to mutual coupling between various types of antennas in arrays such as wires, apertures and microstrip patches or antennas co-sited on platforms Mutual Coupling Between Antennas explores the theoretical underpinnings of mutual coupling, offers an up-to-date description of the physical effects of mutual coupling for a variety of antennas, and contains techniques for analysing and assessing its effects. The book puts the topic in historical context, presents an integral equation approach, includes the current techniques, measurement methods, and discusses the most recent advances in the field. With contributions from noted experts on the topic, the book reviews practical aspects of mutual coupling and examines applications that clearly demonstrate where the performance is impacted both positively and negatively. Mutual Coupling Between Antennas contains information on how mutual coupling can be analysed with a wide range of methods from direct computer software using discrete methods, to integral equations and Greens function methods as well as approximate asymptotic methods. This important text: Provides a theoretical background for understanding mutual coupling between various types of antennas Describes the interaction that occurs between antennas, both planned and unplanned Explores a key aspect of arrays in any wireless, radar or sensing system operating at radio frequencies Offers a groundbreaking book on antenna mutual coupling Written for antenna engineers, technical specialists, researchers and students, Mutual Coupling Between Antennas is the first book to examine mutual coupling between various types of antennas including wires, horns, microstrip patches, MIMO antennas, co-sited antennas and arrays in planar or conformal configurations.




Microstrip Antennas


Book Description

The progress in modern tiny multifunctional wireless devices has dramatically increased the demand for microstrip antennas in recent years. Furthermore, in the last few years, such microstrip antennas found numerous applications in both the military and the commercial sectors. Therefore, microstrip patch antenna has become a major focus to the researchers in the field of antenna engineering. In this book, some recent advances in microstrip antennas are presented. This book contains mainly three sections. In the first section, some new approaches to modern analytical techniques rather than the conventional cavity model, transmission line model, or spectral domain analysis have been discussed. In the second section of the book, a light has been showered on some new techniques for bandwidth enhancement of microstrip radiators. In the last section of the book, the recent trends in microstrip antenna research have been showcased. Some newfangled application-oriented approach to this field is vividly discussed. The books main objective is to facilitate the microstrip antenna researchers for exploring the subject in more vibrant manner and also to revolutionize wireless communications. A sufficient number of topics have been covered, some for the first time in a research handbook. I hope that the book will surely be beneficial for scientists, practicing engineers, and researchers working in the field of microstrip antennas.