Advancing Nuclear Medicine Through Innovation


Book Description

Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.




Probabilistic Safety Assessment and Management


Book Description

A collection of papers presented at the PSAM 7 – ESREL ’04 conference in June 2004, reflecting a wide variety of disciplines, such as principles and theory of reliability and risk analysis, systems modelling and simulation, consequence assessment, human and organisational factors, structural reliability methods, software reliability and safety, insights and lessons from risk studies and management/decision making. This volume covers both well-established practices and open issues in these fields, identifying areas where maturity has been reached and those where more development is needed.




Nuclear Physics


Book Description

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.




Nuclear Technology


Book Description

A reference guide that provides nonspecialists with current information on seminal developments in nuclear technology, as well as covering the social, political, and technical impacts of those developments on everyday life.




An Advanced Course in Modern Nuclear Physics


Book Description

The ?eld of nuclear physics is entering the 21st century in an interesting and exciting way. On the one hand, it is changing qualitatively since new experim- tal developments allow us to direct radioactive and other exotic probes to target nuclei as well as to sparko? extremely energetic nuclear collisions. In parallel, detector systems are of an impressive sophistication. It is di?cult to envisage all the discoveries that will be made in the near future. On the other hand, the app- cations of nuclear science and technology are broadening the limits in medicine, industry, art, archaeology, and the environmental sciences, etc. This implies that the public perception of our ?eld is changing, smoothly but drastically, in c- trast to former times where nuclear weapons and nuclear power plants were the dominant applications perceived by citizens. Both aspects, scienti?c dynamism and popular recognition, should lead the ?eld to an unexpected revival. One of the consequences of the former could be that many brilliant students consider nuclear physics as an excellent ?eld in which to acquire professional expertise. Therefore, one of the challenges of the international nuclear physics community is to try to make the ?eld attractive. That means simply being pedagogic and enthusiastic. Thus, as organisers of an already established summer school, our contribution was to put an emphasis in this session on pedagogy and enthusiasm.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.




Advanced Security and Safeguarding in the Nuclear Power Industry


Book Description

Advanced Security and Safeguarding in the Nuclear Power Industry: State of the art and future challenges presents an overview of a wide ranging scientific, engineering, policy, regulatory, and legal issues facing the nuclear power industry. Editor Victor Nian and his team of contributors deliver a much needed review of the latest developments in safety, security and safeguards ("Three S's”) as well as other related and important subject matters within and beyond the nuclear power industry. This book is particularly insightful to countries with an interest in developing a nuclear power industry as well as countries where education to improve society's opinion on nuclear energy is crucial to its future success. Advanced Security and Safeguarding in the Nuclear Power Industry covers the foundations of nuclear power production as well as the benefits and impacts of radiation to human society, international conventions, treaties, and standards on the "Three S's”, emergency preparedness and response, and civil liability in the event of a nuclear accident.




Advances in Nuclear Science and Technology


Book Description

The present volume in our annual review series reviews a wide range of developments, giving a broad interpretation to the "technology" of our title. Starting at the beginning, Science, we have the review of basic nuclear physics data of Walker and Weaver for reactor kinetics, particularly, there fore, delayed neutron data. In the search for better and better accuracy, it is being realized that this involves the closest scrutiny of fundamental data, given to us here from the Birmingham school. Associated with this review of data is the review from Italy by Professor Pacilio and his co workers of the theory of reactor kinetics in the stochastic form, and a valuable compilation of the theory underlying a wide range of practical techniques. Tending more to technology come the papers by Jervis, reviewing the application of digital computers to the control of large nuclear power stations as developed in both the united Kingdom and Canada, Pickman's review of the design of fuels for heavy water reactors, and the account by Ishi kawa and Inabe of the new Japanese Research Reactor Program, itself initially directed largely to fuel element studies. The balance of the volume is made up of more philoso phical contributions to the practicalities of nuclear power.




Fusion Neutronics


Book Description

This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author’s more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.




Nuclear Materials Science


Book Description

Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.