Advances in Queueing Theory and Network Applications


Book Description

Advances in Queueing Theory and Network Applications presents several useful mathematical analyses in queueing theory and mathematical models of key technologies in wired and wireless communication networks such as channel access controls, Internet applications, topology construction, energy saving schemes, and transmission scheduling. In sixteen high quality chapters, this work provides novel ideas, new analytical models, and simulation and experimental results by experts in the field of queueing theory and network applications. The text serves as a state-of-the-art reference for a wide range of researchers and engineers engaged in the fields of queueing theory and network applications, and can also serve as supplemental material for advanced courses in operations research, queueing theory, performance analysis, traffic theory, as well as theoretical design and management of communication networks.




Queueing Theory with Applications to Packet Telecommunication


Book Description

Queueing Theory with Applications to Packet Telecommunication is an efficient introduction to fundamental concepts and principles underlying the behavior of queueing systems and its application to the design of packet-oriented electrical communication systems. In addition to techniques and approaches found in earlier works, the author presents a thoroughly modern computational approach based on Schur decomposition. This approach facilitates solution of broad classes of problems wherein a number of practical modeling issues may be explored. Key features of communication systems, such as correlation in packet arrival processes at IP switches and variability in service rates due to fading wireless links are introduced. Numerous exercises embedded within the text and problems at the end of certain chapters that integrate lessons learned across multiple sections are also included. In all cases, including systems having priority, developments lead to procedures or formulae that yield numerical results from which sensitivity of queueing behavior to parameter variation can be explored. In several cases multiple approaches to computing distributions are presented. Queueing Theory with Applications to Packet Telecommunication is intended both for self study and for use as a primary text in graduate courses in queueing theory in electrical engineering, computer science, operations research, and mathematics. Professionals will also find this work invaluable because the author discusses applications such as statistical multiplexing, IP switch design, and wireless communication systems. In addition, numerous modeling issues, such as the suitability of Erlang-k and Pade approximations are addressed.




Analysis of Queues


Book Description

Written with students and professors in mind, Analysis of Queues: Methods and Applications combines coverage of classical queueing theory with recent advances in studying stochastic networks. Exploring a broad range of applications, the book contains plenty of solved problems, exercises, case studies, paradoxes, and numerical examples. In addition to the standard single-station and single class discrete queues, the book discusses models for multi-class queues and queueing networks as well as methods based on fluid scaling, stochastic fluid flows, continuous parameter Markov processes, and quasi-birth-and-death processes, to name a few. It describes a variety of applications including computer-communication networks, information systems, production operations, transportation, and service systems such as healthcare, call centers and restaurants.




Queueing Networks


Book Description

Wiley-Interscience Series in Systems and Optimization Queueing Networks Customers, Signals and Product Form Solutions Xiuli Chao, New Jersey Institute of Technology, USA Masakiyo Miyazawa, Science University of Tokyo, Japan Michael Pinedo, New York University, USA 'Mathematically beautiful and elegant yet has much practical application' - Professor Richard Weber The first mathematical analysis of a queueing problem concerned the use of early telephone switches. Since then, emerging technologies such as those in telecommunications and the manufacturing industry have prompted considerable interest and activity in the field. Much of the current research has been enabled by recent, rapid advances in computer technology making large scale simulations and complex approximations possible. Today, queueing systems play an integral role in the performance evaluation and optimization of computer, communication. manufacturing and transportation systems. Includes: * Discussion on the fundamental structures of queueing network models * The latest developments in the field * Thorough examination of numerous applications * Exercises at the end of each chapter * Coverage of queueing networks with signals * Discussion of future research developments With the advances in information technology, many networks have, in addition to conventional jobs, signals and messages circulating throughout the system. A signal carries information and instructions and may trigger complex simultaneous events. The objective of this book is to present, in a unified framework, the latest developments in queueing networks with signals, After introducing the foundations in the first four chapters, Chapters 5 through to 8 cover a number of different queueing network models with various features. Chapters 9 to 11 focus on more fundamental structures of queueing networks and Chapter 12 presents a framework for discrete time queueing network models. The text is illustrated throughout with numerous examples. Graduate students in operations research, computer science, electrical engineering and applied mathematics will find this text accessible and invaluable. An essential reference for operation researchers and computer scientists working on queueing problems in computing, manufacturing and communications networks.




An Introduction to Queueing Theory


Book Description

This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. • A comprehensive treatment of statistical inference for queueing systems. • Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition




Computer Networks and Systems


Book Description

Intended for a first course in performance evaluation, this is a self-contained treatment covering all aspects of queuing theory. It starts by introducing readers to the terminology and usefulness of queueing theory and continues by considering Markovian queues in equilibrium, Littles law, reversibility, transient analysis, and computation, plus the M/G/1 queuing system. It then moves on to cover networks of queues, and concludes with techniques for numerical solutions, a discussion of the PANACEA technique, discrete time queueing systems and simulation, and stochastic Petri networks. The whole is backed by case studies of distributed queueing networks arising in industrial applications. This third edition includes a new chapter on self-similar traffic, many new problems, and solutions for many exercises.




Queueing Networks


Book Description

This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. spanPart 5 enlightens selected applications as spanloss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. spanThe book shows that spanthe intertwined progress of theory and practicespan will remain to be most intriguing and will continue to be the basis of further developments in queueing networks.




Queueing Theory and Network Applications


Book Description

This book constitutes the proceedings of the 13th International Conference on Queueing Theory and Network Applications, QTNA 2018, held in Tsukuba, Japan in July 2018. The 8 full papers together with 10 short papers included in this volume were carefully reviewed and selected from 57 initial submissions. All the papers to be presented disseminate the latest results covering up-to-date research fields such as performance modeling and analysis of telecommunication systems, retrial and vacation queueing models, optimization of queueing systems, modeling of social systems, application of machine learning in queueing models.




Queueing Networks and Markov Chains


Book Description

Critically acclaimed text for computer performance analysis--now in its second edition The Second Edition of this now-classic text provides a current and thorough treatment of queueing systems, queueing networks, continuous and discrete-time Markov chains, and simulation. Thoroughly updated with new content, as well as new problems and worked examples, the text offers readers both the theory and practical guidance needed to conduct performance and reliability evaluations of computer, communication, and manufacturing systems. Starting with basic probability theory, the text sets the foundation for the more complicated topics of queueing networks and Markov chains, using applications and examples to illustrate key points. Designed to engage the reader and build practical performance analysis skills, the text features a wealth of problems that mirror actual industry challenges. New features of the Second Edition include: * Chapter examining simulation methods and applications * Performance analysis applications for wireless, Internet, J2EE, and Kanban systems * Latest material on non-Markovian and fluid stochastic Petri nets, as well as solution techniques for Markov regenerative processes * Updated discussions of new and popular performance analysis tools, including ns-2 and OPNET * New and current real-world examples, including DiffServ routers in the Internet and cellular mobile networks With the rapidly growing complexity of computer and communication systems, the need for this text, which expertly mixes theory and practice, is tremendous. Graduate and advanced undergraduate students in computer science will find the extensive use of examples and problems to be vital in mastering both the basics and the fine points of the field, while industry professionals will find the text essential for developing systems that comply with industry standards and regulations.




Stochastic Models in Queueing Theory


Book Description

This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation