Advances in Steam Turbines for Modern Power Plants


Book Description

Advances in Steam Turbines for Modern Power Plants, second edition, provides a fully revised and updated comprehensive review of steam turbine design, optimization, analysis and measurement. Editor Tadashi Tanuma and his team of expert contributors from around the globe have updated each chapter to reflect the latest research and experiences in the field, to help progress thermal power generation to meet sustainability goals. This book presents modern technologies for the design and development of steam turbines that supply affordable, reliable and stable power with much lower CO2 emissions. With the addition of two new chapters on ‘Steam turbine mechanical design and analysis for high temperature, large and rapid change of temperature conditions’ and ‘Steam valves with low pressure losses’ this edition will support students, researchers and professional engineers in designing and developing their own economical and environmentally concerned thermal power plants. Fully updated to include the latest research and examples from around the globe Includes brand new chapters, case studies, photographs, data, analysis and models Chapters on the design and development of Steam Turbines are written by experienced design engineers who provide first-hand experience and lessons learned.










Advances in Gas Turbine Technology


Book Description

Gas turbine engines will still represent a key technology in the next 20-year energy scenarios, either in stand-alone applications or in combination with other power generation equipment. This book intends in fact to provide an updated picture as well as a perspective vision of some of the major improvements that characterize the gas turbine technology in different applications, from marine and aircraft propulsion to industrial and stationary power generation. Therefore, the target audience for it involves design, analyst, materials and maintenance engineers. Also manufacturers, researchers and scientists will benefit from the timely and accurate information provided in this volume. The book is organized into five main sections including 21 chapters overall: (I) Aero and Marine Gas Turbines, (II) Gas Turbine Systems, (III) Heat Transfer, (IV) Combustion and (V) Materials and Fabrication.




Power Generation Technologies


Book Description

This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses. · Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system




Steam Turbines for Modern Fossil-Fuel Power Plants


Book Description

Presenting the newest approaches to the design and operation of steam turbines, this book also explores modern techniques for refurbishment of aging units. It covers recent engineering breakthroughs and new approaches to transient operating conditions, as well as improved information support for operational personnel. An authoritative guide for power plant engineers, operators, owners and designers on all of these crucial developments, this book fully describes and evaluates the most important new design and operational improvement opportunities for the full spectrum of today's steam turbines – from the newest and most advanced to the more common existing systems.




Advanced Technologies for Gas Turbines


Book Description

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.




Combined Cycle Systems for Near-Zero Emission Power Generation


Book Description

Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems




Gas Turbines for Electric Power Generation


Book Description

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.




Steam Turbines for Modern Power Plants


Book Description

Steam power plants play a vital role in electric power generation. The efficacy of electrical power generation has been improved in the last few years as a result of process optimization. These days a total efficiency of approx. 45% can be reached. Therefore the steam power cycle plays a significant role in engineering education. Steam turbines are used to transform the pressure energy of high pressure steam to kinetic and later electrical energy in power plants and certain types of engines. Whereas steam turbines might be one of the more revolutionary inventions in the power generation and conversion industry. High performance steam turbines of today are specialized in their design and incorporate many efficiency increasing technologies. Steam turbine maintenance is of high importance to keep the steam turbines efficiency high and to conform to safety standards to avoid any unforeseen dangers. The steam turbine operates under high steam pressures, and has a number of moving parts that move at extremely high velocities. Steam Turbines for Modern Power Plants presents an in-depth treatment on steam turbine design optimization, exploration and measurement, development of blades, and other significant essentials, as well as turbine retrofitting and steam turbines for renewable power plants. It considers the newest approaches of the latest decade in design, operation, and refurbishment of steam turbines for fossil-fuel power plants. This book will be of interest to advanced graduate engineers and steam turbine engineers as well as researchers dealing with steam turbine design.