Advances in the Evolutionary Synthesis of Intelligent Agents


Book Description

This book explores a central issue in artificial intelligence, cognitive science, and artificial life: how to design information structures and processes that create and adapt intelligent agents through evolution and learning. Among the first uses of the computer was the development of programs to model perception, reasoning, learning, and evolution. Further developments resulted in computers and programs that exhibit aspects of intelligent behavior. The field of artificial intelligence is based on the premise that thought processes can be computationally modeled. Computational molecular biology brought a similar approach to the study of living systems. In both cases, hypotheses concerning the structure, function, and evolution of cognitive systems (natural as well as synthetic) take the form of computer programs that store, organize, manipulate, and use information. Systems whose information processing structures are fully programmed are difficult to design for all but the simplest applications. Real-world environments call for systems that are able to modify their behavior by changing their information processing structures. Cognitive and information structures and processes, embodied in living systems, display many effective designs for biological intelligent agents. They are also a source of ideas for designing artificial intelligent agents. This book explores a central issue in artificial intelligence, cognitive science, and artificial life: how to design information structures and processes that create and adapt intelligent agents through evolution and learning. The book is organized around four topics: the power of evolution to determine effective solutions to complex tasks, mechanisms to make evolutionary design scalable, the use of evolutionary search in conjunction with local learning algorithms, and the extension of evolutionary search in novel directions.




Embodied Artificial Intelligence


Book Description

Originating from a Dagstuhl seminar, the collection of papers presented in this book constitutes on the one hand a representative state-of-the-art survey of embodied artificial intelligence, and on the other hand the papers identify the important research trends and directions in the field. Following an introductory overview, the 23 papers are organized into topical sections on - philosophical and conceptual issues - information, dynamics, and morphology - principles of embodiment for real-world applications - developmental approaches - artificial evolution and self-reconfiguration




Recent Developments in Biologically Inspired Computing


Book Description

Recent Developments in Biologically Inspired Computing is necessary reading for undergraduate and graduate students, and researchers interested in knowing the most recent advances in problem solving techniques inspired by nature. This book covers the most relevant areas in computational intelligence, including evolutionary algorithms, artificial neural networks, artificial immune systems and swarm systems. It also brings together novel and philosophical trends in the exciting fields of artificial life and robotics. This book has the advantage of covering a large number of computational approaches, presenting the state-of-the-art before entering into the details of specific extensions and new developments. Pseudocodes, flow charts and examples of applications are provided so as to help newcomers and mature researchers to get the point of the new approaches presented.




Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach


Book Description

The two-volume set LNCS 3561 and LNCS 3562 constitute the refereed proceedings of the First International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2005, held in Las Palmas, Canary Islands, Spain in June 2005. The 118 revised papers presented are thematically divided into two volumes; the first includes all the contributions mainly related with the methodological, conceptual, formal, and experimental developments in the fields of Neurophysiology and cognitive science. The second volume collects the papers related with bioinspired programming strategies and all the contributions related with the computational solutions to engineering problems in different application domains.




Intelligence Emerging


Book Description

An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.




Swarm Intelligence and Bio-Inspired Computation


Book Description

Bio-inspired models have taken inspiration from the nature to solve challenging problems in an intelligent manner. Major aims of such bio-inspired models of computation are to propose new unconventional computing architectures and novel problem solving paradigms. Computing models such as artificial neural network (ANN), genetic algorithm (GA), and swarm intelligence (SI) are major constituent models of the bio-inspired approach. Applications of these models are ubiquitous and hence proposed to be applied for Semantic Web. The chapter discusses fundamentals of these bio-inspired constituents along with some heuristic that can be used to design and implement these constituents and briefly surveys recent applications of these models for the Semantic Web. The study shows that the objective of the Semantic Web is better met with such approach and the Web can be accessed in more human-oriented way. At the end, a generic framework for web content filtering based on neuro-fuzzy approach is presented. By considering online webpages and fuzzy user profile, the proposed system classifies the webpages into vague categories using a neural network.




Swarm Intelligence and Bio-Inspired Computation


Book Description

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.




Biomimetics


Book Description

Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots.




Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry


Book Description

The automatic analysis of signals and images together with the characterization and elaboration of their representation features is still a challenging activity in many relevant scientific and hi-tech fields such as medicine, biotechnology, and chemistry. Multidimensional and multisource signal processing can generate a number of information patterns which can be useful to increase the knowledge of several domains for solving complex problems. Furthermore, advanced signal and image manipulation allows relating specific application problems into pattern recognition problems, often implying also the development of KDD and other computational intelligence procedures. Nevertheless, the amount of data produced by sensors and equipments used in biomedicine, biotechnology and chemistry is usually quite huge and structured, thus strongly pushing the need of investigating advanced models and efficient computational algorithms for automating mass analysis procedures. Accordingly, signal and image understanding approaches able to generate automatically expected outputs become more and more essential, including novel conceptual approaches and system architectures. The purpose of this third edition of the International Conference on Mass Data Analysis of Signals and Images in Medicine, Biotechnology, Chemistry and Food Industry (MDA 2008; www.mda-signals.de) was to present the broad and growing scientific evidence linking mass data analysis with challenging problems in medicine, biotechnology and chemistry. Scientific and engineering experts convened at the workshop to present the current understanding of image and signal processing and interpretation methods useful for facing various medical and biological problems and exploring the applicability and effectiveness of advanced techniques as solutions.




Evolution of Artificial Neural Development


Book Description

This book presents recent research on the evolution of artificial neural development, and searches for learning genes. It is fascinating to see how all biological cells share virtually the same traits, but humans have a decided edge over other species when it comes to intelligence. Although DNA decides the form each particular species takes, does it also account for intelligent behaviour in living beings? The authors explore the factors that are perceived as intelligent behaviour in living beings and the incorporation of these factors in machines using genetic programming, which ultimately provides a platform for exploring the possibility of machines that can learn by themselves, i.e. that can “learn how to learn”. The book will be of interest not only to the specialized scientific community pursuing machine intelligence, but also general readers who would like to know more about the incorporation of intelligent behaviour in machines, inspired by the human brain.