Advances in the Science of Victorian Brown Coal


Book Description

Over the past decade, extensive research has been conducted on the subject of coal as one of the world's leading energy sources. The current and future status of this resource is a topic of considerable interest to the largest world economies, including the US, Japan, China and Europe. Advances in the Science of Victorian Brown Coal provides critical reviews of the information and research published over this time, giving the reader an authoritative overview of the science surrounding this important topic. - Critical review of recent research surrounding the utilization of brown coal. Key issues addressed include maximized efficiency and minimized environmental impacts - Focuses on Victorian Brown Coal within the context of biomass and bituminous coal - A critical thermodynamic overview of various advanced power generation technologies




The Science of Victorian Brown Coal


Book Description

The Science of Victorian Brown Coal provides extensive information on Victorian brown coal, which is a major fossil fuel resource by any standard and constitutes about 97% of Victoria's recoverable energy reserves. Energy from brown coal has been the mainstay of the Victorian economy, providing low-cost electricity to the state grid, briquettes as a fuel for industry and town gas prior to the discovery of natural gas. Because of the unique properties of the coal, it has been necessary to develop an in-depth scientific knowledge of the coal and its behavior, as well as innovative technologies for its effective utilization. The economic benefit brown coal has provided to Victoria is demonstrated throughout the chapters. This book aims to provide the springboard for further research and lead to a new era in the development of value-added products and the more efficient utilization of this major resource. This text is a useful reference for students or individuals conducting research on fossil fuel energy, specifically on brown coals.




Gasification for Synthetic Fuel Production


Book Description

Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. - Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification - Reviews gasification processes for liquid fuel production - Outlines the different applications of gasification technology




Advanced Drying Technologies


Book Description

Presents Drying Breakthroughs for an Array of MaterialsDespite being one of the oldest, most energy-intensive unit operations, industrial drying is perhaps the least scrutinized technique at the microscopic level. Yet in the wake of today's global energy crisis, drying research and development is on the rise. Following in the footsteps of the widel







Process Chemistry of Coal Utilization


Book Description

Process Chemistry of Coal Utilization: Reaction Mechanisms for Coal Decomposition and Volatiles Conversion relates major advances in coal science on how to interpret performance data from lab, pilot and commercial scales. The book presents a very broad range of quantitative methods, from statistical regressions, to rudimentary models, CFD and comprehensive reaction mechanisms. Combining the latest research in the field, including an abundance of lab datasets, the book illustrates how a particular operating condition affects a specific coal-based reaction system. Managers who use these tactics will be able to tailor their testing and simulation work to effectively characterize and solve their problems. - Compiles fully validated reaction mechanisms that accurately depict the coal quality impacts in all major coal utilization technologies - Includes an abundance of lab datasets that clearly illustrate how operating conditions affect coal-based reaction systems




Advanced Power Plant Materials, Design and Technology


Book Description

Fossil-fuel power plants account for the majority of worldwide power generation. Increasing global energy demands, coupled with issues of ageing and inefficient power plants, have led to new power plant construction programmes. As cheaper fossil fuel resources are exhausted and emissions criteria are tightened, utilities are turning to power plants designed with performance in mind to satisfy requirements for improved capacity, efficiency, and environmental characteristics.Advanced power plant materials, design and technology provides a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Part one critically reviews advanced power plant designs which target both higher efficiency and flexible operation, including reviews of combined cycle technology and materials performance issues.Part two reviews major plant components for improved operation, including advanced membrane technology for both hydrogen (H2) and carbon dioxide (CO2) separation, as well as flue gas handling technologies for improved emissions control of sulphur oxides (SOx), nitrogen oxides (NOx), mercury, ash and particulates. The section concludes with coverage of high-temperature sensors, and monitoring and control technology that are essential to power plant operation and performance optimisation.Part three begins with coverage of low-rank coal upgrading and biomass resource utilisation for improved power plant fuel flexibility. Routes to improve the environmental impact are also reviewed, with chapters detailing the integration of underground coal gasification and the application of carbon dioxide (CO2) capture and storage. Finally, improved generation performance is reviewed with coverage of syngas and hydrogen (H2) production from fossil-fuel feedstocks.With its distinguished international team of contributors, Advanced power plant materials, design and technology is a standard reference for all power plant engineers and operators, as well as to academics and researchers in this field. - Provides a comprehensive reference on the state-of-the-art gas-fired and coal-fired power plants, their major components and performance improvement options - Examines major plant components for improved operation as well as flue gas handling technologies for improved emissions control - Routes to improve environmental impact are discussed with chapters detailing the integration of underground coal gasification




Low-rank Coals for Power Generation, Fuel and Chemical Production


Book Description

Low-Rank Coals for Power Generation, Fuel and Chemical Production provides a thorough introduction to lignite (brown coal) and subbituminous coals and explores how they can be used efficiently and economically in place of hard coal. The book examines the undesirable characteristics of low-quality coals, such as high moisture content, low calorific value, and aggressive ash characteristics, and the resulting refinements to standard technologies and practices required for successful combustion, gasification, and pyrolysis.The first part of this book provides a comprehensive and systematic review of the properties of low-rank coals and corresponding preparation methods, such as drying, cleaning, and upgrading. Power generation from low-rank coals is the focus of Part 2, with chapter topics ranging from high efficiency pulverized coal combustion and circulatingfluidized bed combustion to emerging areas such as chemical looping and oxyfuel combustion. The final contributions address the important subjects of coal-to-liquids,polygeneration and coke production using low-rank coals, as well as the critical issue of carbon capture and storage.This book is a valuable resource for power generation engineers and researchers seeking to maximize the opportunities provided by these cheaper coal feedstocks for efficient and environmentally compatible power generation. - Presents the most in-depth treatment of low-rank coals available - Addresses both power generation and fuel production - Includes coverage that spans pulverized coal combustion and emerging technologies, such as CFBC, UCG, CLC, and oxyfuel combustion




Drying of Biomass, Biosolids, and Coal


Book Description

Drying of Biomass, Biosolids, and Coal: For Efficient Energy Supply and Environmental Benefits provides insight into advanced technologies and knowledge of the drying of biomass, biosolids, and coal in terms of improved efficiency, economics, and environmental impact. It comprehensively covers all the important aspects of drying for a variety of biomass, biosolids and coal resources. This book covers the drying of biomass, bio-solids and coal while also providing integration of the drying process with the energy system. Important issues in the commercial drying operations are tackled, including energy and exergy efficiencies, environmental impact, and potential safety concerns. It also assesses the performance of energy production plants in integration with biomass/coal drying to provide information for plant optimization. It offers in-depth analysis and data for process understanding and design, and analyzes the drying process’s effect on economics and the environment. This book is aimed at drying professionals and researchers, chemical engineers, industrial engineers, and manufacturing engineers. It will also be of use to anyone who is interested in the utilization of biomass, organic solid wastes, algae and low-rank coals for energy.




Advanced Energy Saving and its Applications in Industry


Book Description

The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation. Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy saving potential by utilizing the surplus heat across the sites. Advanced Energy Saving and its Applications in Industry assesses conventional approaches to industrial energy saving and explains and outlines new methods to provide even greater energy saving potential. Advanced Energy Saving and its Applications in Industry provides a key resource and research tool for all those involved in developing the energy efficiency of industrial processes. Researchers, industry professionals and even students with an interest in green engineering will find the summaries of the conventional and suggested new methods useful when attempting to advance further development within this field.