The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.




Wildlife Disease Ecology


Book Description

Introduces readers to key case studies that illustrate how theory and data can be integrated to understand wildlife disease ecology.




Ending the War Metaphor


Book Description

Infectious diseases have existed longer than us, as long as us, or are relatively newer than us. It may be the case that a disease has existed for many, many years but has only recently begun affecting humans. At the turn of the century the number of deaths caused by infections in the United States had been falling steadily but since the '80s has seen an increase. In the past 30 years alone 37 new pathogens have been identified as human disease threats and 12% of known human pathogens have been classified as either emerging or remerging. Whatever the story, there is currently a "war" on infectious diseases. This war is simply the systematic search for the microbial "cause" of each disease, followed by the development of antimicrobial therapies. The "war" on infectious diseases, however, must be revisited in order to develop a more realistic and detailed picture of the dynamic interactions among and between host organisms and their diverse populations of microbes. Only a fraction of these microbes are pathogens. Thus, in order to explore the crafting of a new metaphor for host-microbe relationships, and to consider how such a new perspective might inform and prioritize biomedical research, the Forum on Microbial Threats of the Institute of Medicine (IOM) convened the workshop, Ending the War Metaphor: The Changing Agenda for Unraveling the Host-Microbe Relationship on March 16-17, 2005. Workshop participants examined knowledge and approaches to learning about the bacterial inhabitants of the human gut, the best known host-microbe system, as well as findings from studies of microbial communities associated with other mammals, fish, plants, soil, and insects. The perspective adopted by this workshop is one that recognizes the breadth and diversity of host-microbe relationships beyond those relative few that result in overt disease. Included in this summary are the reports and papers of individuals participating in the Forum as well as the views of the editors.




The Pangenome


Book Description

This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.




Probiotics and Prebiotics in Animal Health and Food Safety


Book Description

This book discusses the role of probiotics and prebiotics in maintaining the health status of a broad range of animal groups used for food production. It also highlights the use of beneficial microorganisms as protective agents in animal derived foods. The book provides essential information on the characterization and definition of probiotics on the basis of recently released guidelines and reflecting the latest trends in bacterial taxonomy. Last but not least, it discusses the concept of “dead” probiotics and their benefits to animal health in detail. The book will benefit all professors, students, researchers and practitioners in academia and industry whose work involves biotechnology, veterinary sciences or food production.




Animal Welfare in Animal Agriculture


Book Description

What constitutes animal welfare? With animals being used for companionship, service, research, food, fiber, and by-products, animal welfare is a topic of great interest and importance to society. As the world's population continues to increase, a major challenge for society is the maintenance of a strong and viable food system, which is linked to t




The Hologenome Concept: Human, Animal and Plant Microbiota


Book Description

Groundbreaking research over the last 10 years has given rise to the hologenome concept of evolution. This concept posits that the holobiont (host plus all of its associated microorganisms) and its hologenome (sum of the genetic information of the host and its symbiotic microorganisms), acting in concert, function as a unique biological entity and therefore as a level of selection in evolution. All animals and plants harbor abundant and diverse microbiota, including viruses. Often the amount of symbiotic microorganisms and their combined genetic information far exceed that of their host. The microbiota with its microbiome, together with the host genome, can be transmitted from one generation to the next and thus propagate the unique properties of the holobiont. The microbial symbionts and the host interact in a cooperative way that affects the health of the holobiont within its environment. Beneficial microbiota protects against pathogens, provides essential nutrients, catabolizes complex polysaccharides, renders harmful chemicals inert, and contributes to the performance of the immune system. In humans and animals, the microbiota also plays a role in behavior. The sum of these cooperative interactions characterizes the holobiont as a unique biological entity. Genetic variation in the hologenome can be brought about by changes in either the host genome or the microbial population genomes (microbiome). Evolution by cooperation can occur by amplifying existing microbes, gaining novel microbiota and by acquiring microbial and viral genes. Under environmental stress, the microbiome can change more rapidly and in response to more processes than the host organism alone and thus influences the evolution of the holobiont. Prebiotics, probiotics, synbiotics and phage therapy are discussed as applied aspects of the hologenome concept.




Prebiotics and Probiotics Science and Technology


Book Description

A comprehensive overview on the advances in the field, this volume presents the science underpinning the probiotic and prebiotic effects, the latest in vivo studies, the technological issues in the development and manufacture of these types of products, and the regulatory issues involved. It will be a useful reference for both scientists and technologists working in academic and governmental institutes, and the industry.




The Science and Applications of Microbial Genomics


Book Description

Over the past several decades, new scientific tools and approaches for detecting microbial species have dramatically enhanced our appreciation of the diversity and abundance of the microbiota and its dynamic interactions with the environments within which these microorganisms reside. The first bacterial genome was sequenced in 1995 and took more than 13 months of work to complete. Today, a microorganism's entire genome can be sequenced in a few days. Much as our view of the cosmos was forever altered in the 17th century with the invention of the telescope, these genomic technologies, and the observations derived from them, have fundamentally transformed our appreciation of the microbial world around us. On June 12 and 13, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to discuss the scientific tools and approaches being used for detecting and characterizing microbial species, and the roles of microbial genomics and metagenomics to better understand the culturable and unculturable microbial world around us. Through invited presentations and discussions, participants examined the use of microbial genomics to explore the diversity, evolution, and adaptation of microorganisms in a wide variety of environments; the molecular mechanisms of disease emergence and epidemiology; and the ways that genomic technologies are being applied to disease outbreak trace back and microbial surveillance. Points that were emphasized by many participants included the need to develop robust standardized sampling protocols, the importance of having the appropriate metadata, data analysis and data management challenges, and information sharing in real time. The Science and Applications of Microbial Genomics summarizes this workshop.