Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications


Book Description

This book reflects the latest developments in variable structure systems (VSS) and sliding mode control (SMC), highlighting advances in various branches of the VSS/SMC field, e.g., from conventional SMC to high-order SMC, from the continuous-time domain to the discrete-time domain, from theories to applications, etc. The book consists of three parts and 16 chapters: in the first part, new VSS/SMC algorithms are proposed and their properties are analyzed, while the second focuses on the use of VSS/SMC techniques to solve a variety of control problems; the third part examines the applications of VSS/SMC to real-time systems. The book introduces postgraduates and researchers to the state-of-the-art in VSS/SMC field, including the theory, methodology, and applications. Relative academic disciplines include Automation, Mathematics, Electrical Engineering, Mechanical Engineering, Instrument Science and Engineering, Electronic Engineering, Computer Science and Technology, Transportation Engineering, Energy and Power Engineering, etc.




Advanced and Optimization Based Sliding Mode Control: Theory and Applications


Book Description

A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.




Advances in Variable Structure and Sliding Mode Control


Book Description

Many of the chapters in this book are based on expansions of selected presentations from the 8th IEEE International Workshop on Variable Structure Systems VSS'04, which was held in Barcelona, Spain in September 2004. The editors have tried to identify the key contributions from this workshop, which define the state-of-the-art, represent new directions building on existing work, and highlight new emerging application areas.




Advances in Discrete-Time Sliding Mode Control


Book Description

The focus of this book is on the design of a specific control strategy using digital computers. This control strategy referred to as Sliding Mode Control (SMC), has its roots in (continuous-time) relay control. This book aims to explain recent investigations' output in the field of discrete-time sliding mode control (DSMC). The book starts by explaining a new robust LMI-based (state-feedback and observer-based output-feedback) DSMC including a new scheme for sparsely distributed control. It includes a novel event-driven control mechanism, called actuator-based event-driven scheme, using a synchronized-rate biofeedback system for heart rate regulation during cycle-ergometer. Key Features: Focuses on LMI-based SMC (sliding mode control) for uncertain discrete-time system using novel nonlinear components in the control law Makes reader understand the techniques of designing a discrete controller based on the flexible sliding functions Proposes new algorithms for sparsifying control and observer network through multi-objective optimization frameworks Discusses a framework for the design of SMC for two-dimensional systems along with analyzing the controllability of two-dimensional systems Discusses novel schemes for sparsifying the control network




Variable Structure Systems: Towards the 21st Century


Book Description

The book is a collection of contributions concerning the theories, applications and perspectives of Variable Structure Systems (VSS). Variable Structure Systems have been a major control design methodology for many decades. The term Variable Structure Systems was introduced in the late 1950’s, and the fundamental concepts were developed for its main branch Sliding Mode Control by Russian researchers Emelyanov and Utkin. The 20th Century has seen the formation and consolidation of VSS theory and its applications. It has also seen an emerging trend of cross-fertilization and integration of VSS with other control and non-control techniques such as feedback linearization, ?atness, passivity based control, adaptive and learning ? control, system identi?cation, pulse width modulation, H geometric and algebraic methods, arti?cial intelligence, modeling and optimization, neural networks, fuzzy logic, to name just a few. This trend will continue and ?ourish in the new millennium. To re?ect these major developments in the 20th Century, this book - cludes 16 specially invited contributions from well-known experts in VSS theory and applications, covering a wide range of topics. The ?rst chapter, “First Stage of VSS: People and Events” written by Vadim Utkin, the founder of VSS, oversees and documents the historical developments of VSS in the 20th Century, including many interesting events not known to the West until now. The second chapter, “An Integrated Learning Variable Structure Control Method” written by Jian-Xin Xu, addresses an important issue regarding control integration between variable structure control and learning control.




Sliding Mode Control


Book Description

The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area.




Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics


Book Description

This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.




Advances and Applications in Sliding Mode Control systems


Book Description

This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.




Advances in Sliding Mode Control


Book Description

The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear and underactuated systems, sliding mode observers, discrete sliding mode control together with cutting edge research contributions in the application of the sliding mode concept to real world problems. This book provides the reader with a clear and complete picture of the current trends in Variable Structure Systems and Sliding Mode Control Theory.




Advances In Variable Structure Systems: Analysis, Integration And Application - Proceedings Of The 6th Ieee International Workshop On Variable Structure Systems


Book Description

The last of such a workshop in the 20th Century, this workshop aims not only to summarize the state-of-the-art developments in VSS theory and applications, but also identify new promising directions perceived as being important for VSS in the 21st century. The 20th Century has witnessed the formation and consolidation of VSS theory and its applications. It has also witnessed an emerging trend of cross-fertilization and integration of VSS with other control and non-control areas such as feedback linearization, flatness, passivity based control, adaptive control, system identification, pulse width modulation, Hinf, geometric and algebraic methods, artificial intelligence, modelling and optimisation, neural networks, fuzzy logic, etc. This trend will continue and flourish in the new millennium.Special features of the book include a survey paper entitled “VSS Premise of XX Century: Evidences of a Witness” by the father of VSS theory Professor Vadim Utkin and other articles by many authoritative experts in VSS.