Advances in Yeast Biotechnology for Biofuels and Sustainability


Book Description

Advances in Yeast Biotechnology for Biofuels and Sustainability: Value-Added Products and Environmental Remediation Applications showcases the uses for engineered yeast in environmental applications, especially as an innovative source of biofuels. Beginning with a thorough review of recent advances and future potential for yeast biotechnology, the book proceeds to outline several options for biofuels, including lignocellulosic biofuels and alternative feedstock production through hydrolysis and alternative value-added products, including industrial acids and bioplastics and applications in agriculture and environmental remediation. Placing case studies at the center of each chapter, this book presents a future-focused perspective on the potential of yeast biotechnologies to support sustainability. - Lays out methods, including multiple options for generating biofuels from engineered yeast and several additional value-added products - Presents a wide variety of real-world sustainable applications for engineered yeast, with a focus on biofuels production - Provides a selection of case studies in other value-added products and applications, including bioremediation, pollution remediation, and biofertilizers in sustainable agriculture




Microbial Bioremediation and Multiomics Technologies for Sustainable Development


Book Description

The steadily increasing presence of both natural and anthropogenic pollutants in our environment poses a considerable challenge, given the recalcitrance of many of these pollutants. Microbial bioremediation presents a promising and sustainable strategy that harnesses a diverse array of microorganisms, operating either concurrently or sequentially, to eliminate or mitigate the presence of pollutants within the environment. Recent years have witnessed the application of multiomics techniques to the study of biodegradation and bioremediation, yielding an abundance of novel data that enrich our comprehension of pivotal pathways and offer fresh perspectives on the adaptability of organisms amidst shifting environmental conditions. This book brings together recent progress in microbial bioremediation, emphasizing the emerging field of multiomics technologies. It serves as a valuable reference for microbiologists exploring multiomics applications and environmental scientists seeking innovative remediation solutions.




Sustainable Biofuels


Book Description

Sustainable Biofuels: Opportunities and challenges, a volume in the "Applied Biotechnology Reviews series, explores the state-of-the-art in research and applied technology for the conversion of all types of biofuels. Its chapters span a broad spectrum of knowledge, from fundamentals and technical aspects to optimization, combinations, economics, and environmental aspects. They cover various facets of research, production, and commercialization of bioethanol, biodiesel, biomethane, biohydrogen, biobutanol, and biojet fuel. This book discusses biochemical, thermochemical, and hydrothermal conversion of unconventional feedstocks, including the role of biotechnology applications to achieve efficiency and competitiveness. Through case studies, techno-economic analysis and sustainability assessment, including life cycle assessment, it goes beyond technical aspects to provides actual resources for better decision-making during the development of commercially viable technology by researchers, PhD students, and practitioners in the field of bioenergy. It is also a useful resource for those in adjacent areas, such as biotechnology, industrial microbiology, chemical engineering, environmental engineering, and sustainability science, who are working on solutions for the bioeconomy. The ability to compare different technologies and their outcome that this book provides is also beneficial for energy analysts, consultants, planners, and policy-makers. The "Applied Biotechnology Reviews series highlights current development and research in biotechnology-related fields, combining in single-volume works the theoretical aspects and real-world applications for better decision-making. - Covers current technologies and advancements in biochemical, thermochemical, and hydrothermal conversion methods for production of various types of biofuels from conventional and nonconventional feedstock - Examines biotechnology processes, including genetic engineering of microorganisms and substrates, applied to biofuel production - Bridges the gap between technology development and prospects of commercialization of bioprocesses, including policy and economics of biofuel production, biofuel value chains, and how to accomplish cost-competitive results and sustainable development




Bio-organic Amendments for Heavy Metal Remediation


Book Description

Bio-organic Amendments for Heavy Metal Remediation: Water, soil and plant focuses on these core continuum media to explore remediation options using microbial, organic and combined approached. A volume in the Plant Biology, Sustainability and Climate Change series, this book offers a comprehensive view of techniques and approaches for addressing contamination by heavy metals.As anthropogenic activities increasingly negatively impact natural resources, there has been significant disturbance of water, soil, and plant continuum due to the accumulation of heavy metals. The bioaccumulation of heavy metals in the food chain could pose life-threatening effects on plants as well as humans, and there is need to find effective and sustainable remediation options. The application of bio-organic amendments could serve as a sustainable solution to this problem.Employing microbial, organic and combined approaches to reduce the accumulation of heavy metals in the food chain ultimately would lead to the production of safe food for humans.This book provides a comprehensive view of the challenge with a focus on the bioremediation of heavy metals contamination using ecotechnological approaches to protecting the soil, water and plant continuum. - Highlights remediation techniques/approaches for heavy metals under water, soil and plant continuums - Presents case-studies for real-world insights as well as current practices - Includes regulatory aspects for ensuring safe implementation




Sustainable Nanomaterials


Book Description

Zusammenfassung: This book brings together various topics of nanomaterials in various industrial applications to promote sustainable development practices. The first part of the book describes green nanotechnology for clean energy and environmental sustainability, which includes heavy metal detoxification from water, wastewater remediation, dye degradation, and bioremediation. The second part of the book covers sustainable biomedical applications of nanomaterials such as antibacterial activity and drug delivery systems, which includes the toxicological as well as the antibacterial impacts that nanoparticles have on microorganisms. The subsequent chapters discuss the roles of nanomaterials for sustainability in agriculture, crop protection, plant disease management, food technology (increasing the efficiency of the food industry), and the textile industry. The book caters to researchers and scientists who are interested in the utilization of nanomaterials to enhance sustainable industrial practices




Biofuels Production – Sustainability and Advances in Microbial Bioresources


Book Description

This book focuses on the different kinds of biofuels and biofuel resources. Biofuels represent a major type of renewable energy. As part of a larger bio-economy, they are closely linked to agriculture, forestry and manufacturing. Biofuels have the potential to improve regional energy access, reduce dependence on fossil fuels and contribute to climate protection. Further, this alternative form of energy could revitalize the forestry and agricultural sector and promote the increased use of renewable resources as raw materials in a range of industrial processes. Efforts are continuously being made to develop economically competitive biofuels, and microbes play important roles in the production of biofuels from various bioresources. This book elaborates on recent advances in existing microbial technologies and on sustainable approaches to improving biofuel production processes. Additionally, it examines trends in, and the limitations of, existing processes and technologies. The book offers a comprehensive overview of microbial bioresources, microbial technologies, advances in bioconversion and biorefineries, as well as microbial and metabolic engineering for efficient biofuel production. Readers will also learn about the environmental impacts and the influence of climate change on the sustainability of biofuel production. This book is intended for researchers and students whose work involves biorefinery technologies, microbiology, biotechnology, agriculture, environmental biology and related fields.




New Microbial Technologies for Advanced Biofuels


Book Description

This title includes a number of Open Access chapters.The world needs renewable and clean forms of energy. Biofuels offer an alternative to fossil fuels, but first-generation biofuels had many challenges to be overcome. One strategy that second-generation biofuels are employing is microbial technology.This compendium volume gathers together recent i




Microbial BioTechnology for Sustainable Agriculture Volume 1


Book Description

This volume explains the recent findings on the mutualistic plant–microbe interactions and how they can be utilized for sustainable agriculture practices including land reclamation. The book covers mainly plant growth promoting microorganisms (PGPMs) including both the symbiotic bacteria and fungi and their role in mobilization of nutrients, providing protection to the crops from phytopathogens and abiotic stresses. PGPMs play important roles in survival and health of the plant. These useful microorganisms provide plants with nutrients, protect them from pathogens and help them combat abiotic stresses. It is important that these mutualistic interactions between plant and soil microbes are well understood so as to develop reliable products in the form of biostimulants and biopesticides, as well as managing biotic and abiotic stresses in crops. Apart from enhancing crop productivity plant–microbe interactions can also perform activities such as reclamation of degraded lands, degradation of pollutants and remediation of saline or marginal lands. This book is of interest to teachers, researchers, plant scientists and microbiologists. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, microbiology, biotechnology, ecology, soil science and environmental sciences.




Advanced Biofuel Technologies


Book Description

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. Covers technologies and processes of different types of biofuel production Outlines a selection of different types of renewable feedstocks for biofuel production Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel Includes regulations, policies and lifecycle and techno-economic assessments




Biorefinery Production Technologies for Chemicals and Energy


Book Description

This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.