Advances on Modeling in Tissue Engineering


Book Description

This book presents a collection of chapters describing the state of the art on computational modelling and fabrication in tissue engineering. Tissue Engineering is a multidisciplinary field involving scientists from different fields. The development of mathematical methods is quite relevant to understand cell biology and human tissues as well to model, design and fabricate optimized and smart scaffolds. The chapter authors are the distinguished keynote speakers at the first Eccomas thematic conference on Tissue Engineering where the emphasis was on mathematical and computational modeling for scaffold design and fabrication. This particular area of tissue engineering, whose goal is to obtain substitutes for hard tissues such as bone and cartilage, is growing in importance.




Advances In Tissue Engineering


Book Description

Advances in Tissue Engineering is a unique volume and the first of its kind to bring together leading names in the field of tissue engineering and stem cell research. A relatively young science, tissue engineering can be seen in both scientific and sociological contexts and successes in the field are now leading to clinical reality. This book attempts to define the path from basic science to practical application. A contribution from the UK Stem Cell Bank and opinions of venture capitalists offer a variety of viewpoints, and exciting new areas of stem cell biology are highlighted. With over fifty stellar contributors, this book presents the most up-to-date information in this very topical and exciting field./a




Advances on Modeling in Tissue Engineering


Book Description

This book presents a collection of chapters describing the state of the art on computational modelling and fabrication in tissue engineering. Tissue Engineering is a multidisciplinary field involving scientists from different fields. The development of mathematical methods is quite relevant to understand cell biology and human tissues as well to model, design and fabricate optimized and smart scaffolds. The chapter authors are the distinguished keynote speakers at the first Eccomas thematic conference on Tissue Engineering where the emphasis was on mathematical and computational modeling for scaffold design and fabrication. This particular area of tissue engineering, whose goal is to obtain substitutes for hard tissues such as bone and cartilage, is growing in importance.




Computational Modeling in Tissue Engineering


Book Description

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.




Principles of Tissue Engineering


Book Description

The opportunity that tissue engineering provides for medicine is extraordinary. In the United States alone, over half-a-trillion dollars are spent each year to care for patients who suffer from tissue loss or dysfunction. Although numerous books and reviews have been written on tissue engineering, none has been as comprehensive in its defining of the field. Principles of Tissue Engineering combines in one volume the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation of applications of tissue engineering to diseases affecting specific organ systems. The first edition of the book, published in 1997, is the definite reference in the field. Since that time, however, the discipline has grown tremendously, and few experts would have been able to predict the explosion in our knowledge of gene expression, cell growth and differentiation, the variety of stem cells, new polymers and materials that are now available, or even the successful introduction of the first tissue-engineered products into the marketplace. There was a need for a new edition, and this need has been met with a product that defines and captures the sense of excitement, understanding and anticipation that has followed from the evolution of this fascinating and important field. Key Features* Provides vast, detailed analysis of research on all of the major systems of the human body, e.g., skin, muscle, cardiovascular, hematopoietic, and nerves* Essential to anyone working in the field* Educates and directs both the novice and advanced researcher* Provides vast, detailed analysis of research with all of the major systems of the human body, e.g. skin, muscle, cardiovascular, hematopoietic, and nerves* Has new chapters written by leaders in the latest areas of research, such as fetal tissue engineering and the universal cell* Considered the definitive reference in the field* List of contributors reads like a "who's who" of tissue engineering, and includes Robert Langer, Joseph Vacanti, Charles Vacanti, Robert Nerem, A. Hari Reddi, Gail Naughton, George Whitesides, Doug Lauffenburger, and Eugene Bell, among others




Biofabrication and 3D Tissue Modeling


Book Description

3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.




Advances in Tissue Engineering


Book Description

Advances in Tissue Engineering is a unique volume and the first of its kind to bring together leading names in the field of tissue engineering and stem cell research. A relatively young science, tissue engineering can be seen in both scientific and sociological contexts and successes in the field are now leading to clinical reality. This book attempts to define the path from basic science to practical application. A contribution from the UK Stem Cell Bank and opinions of venture capitalists offer a variety of viewpoints, and exciting new areas of stem cell biology are highlighted. With over fifty stellar contributors, this book presents the most up-to-date information in this very topical and exciting field.




New Developments in Tissue Engineering and Regeneration


Book Description

This volume presents a new contribution for the field of Tissue Engineering with a focus on the development of mathematical and computational methods that are relevant to understand human tissues, as well to model, design, and fabricate optimized and smart scaffolds. The multidisciplinary character of this field has motivated contributions from different areas with a common objective to replace damaged tissues and organs by healthy ones. This work treats tissue healing approaches, mathematic modelling for scaffold design and bio fabrication methods, giving the reader a broad view of the state of the art in Tissue Engineering. The present book contains contributions from recognized researchers in the field, who were keynote speakers in the Fourth International Conference on Tissue Engineering, held in Lisbon in 2015, and covering different aspects of Tissue Engineering. The book is strongly connected with the conference series of ECCOMAS Thematic Conferences on Tissue Engineering, an event that brings together a considerable number of researchers from all over the world, representing several fields of study related to Tissue Engineering.




Frontiers in Tissue Engineering


Book Description

Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.




Tissue Engineering


Book Description

Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students coming to the subject for the first time. In addition to the key topics covered in the previous edition, this update also includes new material on the regulatory authorities, commercial considerations as well as new chapters on microfabrication, materiomics and cell/biomaterial interface. Effectively reviews major foundational topics in tissue engineering in a clear and accessible fashion Includes state of the art experiments presented in break-out boxes, chapter objectives, chapter summaries, and multiple choice questions to aid learning New edition contains material on regulatory authorities and commercial considerations in tissue engineering