An Introduction to Atmospheric Gravity Waves


Book Description

Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation. Foreword is written by Prof. George Chimonas, a renowned expert on the interactions of gravity waves with turbulence. CD containing real data, computer codes for data analysis and linear gravity wave models included with the text




Remote Sensing of Atmospheric Conditions for Wind Energy Applications


Book Description

This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented.




Earth Resources


Book Description




Lidar


Book Description

Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date. With a Foreword by one of the founding fathers in the area. Its broad cross-disciplinary scope should appeal to scientists ranging from the view of optical sciences to environmental engineers. Optical remote sensing has matured to become a lead method for cross-disciplinary research. This new multi-authored book reviews the state-of-the-art in a readable monograph.




Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity


Book Description

This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The aritcles “Observing Convective Aggregation”, “An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles”, “Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations”, “A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment”, “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”, “Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review”, “Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere”, “Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles”, “Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors”, and “EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation” are available as open access articles under a CC BY 4.0 license at link.springer.com.




Next Generation Earth System Prediction


Book Description

As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.




Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting


Book Description

This volume presents the history of marine fog research and applications, and discusses the physical processes leading to fog's formation, evolution, and dissipation. A special emphasis is on the challenges and advancements of fog observation and modeling as well as on efforts toward operational fog forecasting and linkages and feedbacks between marine fog and the environment.




Advances in Atmospheric Remote Sensing with Lidar


Book Description

Lidar or laser radar, the depth-resolved remote measurement of atmospheric parameters with optical means, has become an important tool in the field of atmospheric and environmental remote sensing. In this volume the latest progress in the development of Lidar methods, experiments, and applications is described. The content is based on selected and thoroughly refereed papers presented at the 18th International Laser Radar Conference, Berlin, 22 - 26 July 1996. The book is divided into six parts which cover the topics of tropospheric aerosols and clouds, Lidar in space, wind, water vapor, troposheric trace gases and plumes, and stratospheric and mesospheric profiling. As a supplement to fundamental LIDAR textbooks this volume may serve as a guide through the blossoming field of modern Lidar techniques.




Springer Handbook of Atmospheric Measurements


Book Description

This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present classical in-situ measurements as well as remote sensing techniques from both ground-based as well as airborn or satellite-based methods. The next part focusses on complex measurements and methods that integrate different techniques to establish more holistic data. Brief discussions of measurements in soils and water, at plants, in urban and rural environments and for renewable energies demonstrate the potential of such applications. The final part provides an overview of atmospheric and ecological networks. Written by distinguished experts from academia and industry, each of the 64 chapters provides in-depth discussions of the available devices with their specifications, aspects of quality control, maintenance as well as their potential for the future. A large number of thoroughly compiled tables of physical quantities, sensors and system characteristics make this handbook a unique, universal and useful reference for the practitioner and absolutely essential for researchers, students, and technicians.