Book Description
The static aerodynamic and acoustic characteristics of duct-burning turbofan (DBTF) exhaust nozzles are established. Scale models, having a total area equivalent to a 0.127 m diameter convergent nozzle, simulating unsuppressed coannular nozzles and mechanically suppressed nozzles with and without ejectors (hardwall and acoustically treated) were tested in a quiescent environment. The ratio of fan to primary area was varied from 0.75 to 1.2. Far field acoustic data, perceived noise levels, and thrust measurements were obtained for 417 test conditions. Pressure ratios were varied from 1.3 to 4.1 in the fan stream and from 1.53 to 2.5 in the primary stream. Total temperature varied from 395 to 1090 K in both streams. Jet noise reductions relative to synthesized prediction from 8 PNdB (with the unsuppressed coannular nozzle) to 15 PNdB (with a mechanically suppressed configuration) were observed at conditions typical of engines being considered under the Advanced Supersonic Technology program. The inherent suppression characteristic of the unsuppressed coannular nozzle is related to the rapid mixing in the jet wake caused by the velocity profiles associated with the DBTF. Since this can be achieved without a mechanical suppressor, significant reductions in aircraft weight or noise footprint can be realized.