Aerogels II


Book Description

The book focuses on aerogels for biomedical applications, thermal insulation, energy storage, fuel cells, batteries and environmental remediation. Keywords: Aerogels, Biomedical Applications, Implantable Devices, Tissue Engineering, Bone Regeneration, Biosensing, Pharmacological Applications, Catalysts, Water Purification, Pesticides, Thermal Insulation, Energy Storage, Fuel Cells, Batteries, Environmental Remediation, Polymer Aerogels, Bioaerogels, Carbon-based Aerogels.




Springer Handbook of Aerogels


Book Description

This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.




Aerogels II


Book Description

The book focuses on aerogels for biomedical applications, thermal insulation, energy storage, fuel cells, batteries and environmental remediation. Keywords: Aerogels, Biomedical Applications, Implantable Devices, Tissue Engineering, Bone Regeneration, Biosensing, Pharmacological Applications, Catalysts, Water Purification, Pesticides, Thermal Insulation, Energy Storage, Fuel Cells, Batteries, Environmental Remediation, Polymer Aerogels, Bioaerogels, Carbon-based Aerogels.




Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications


Book Description

Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications brings together detailed information on gels, hydrogels, and aerogels derived from natural polymers, covering materials, processing, fabrication techniques, structure-property relationships, and novel applications.The book begins by introducing polymeric gels, hydrogels, and aerogels, the different types and properties, advantages and disadvantages, manufacturing techniques, production and scalability, and the possible applications. This is followed by thorough coverage of processing methods for obtaining natural polymer-based gels and hydrogels, with separate chapters focusing on physical processes, chemical processes, green processes, and processing for aerogels. The final chapters of the book focus on the preparation of natural polymer-based gels, hydrogels, and aerogels for many state-of-the-art applications, including biomedical, absorbent, energy saving, filtration, and sensing areas.Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications is an essential resource for all those with an interest in polymeric gels and natural polymers, including researchers and scientists in polymer engineering, polymer chemistry, sustainable materials, biomaterials, materials science and engineering, and chemical engineering. In industry, this book supports scientists, R&D, and engineers looking to utilize novel bio-based materials for advanced applications. - Covers the physical, chemical, and green processing methods for obtaining gels, hydrogels, and aerogels from natural polymers - Explores a range of cutting-edge uses, including in biomedical, absorbent, energy-saving, filtration, and bio-sensing applications - Presents the latest innovations in the field, including the preparation of lightweight, highly open porous polysaccharide and protein aerogels




Advances in Aerogel Composites for Environmental Remediation


Book Description

Advances in Aerogel Composites for Environmental Remediation presents both contextual information aboutaerogels and details about their application in environmental remediation. A wide variety of aerogels are discussed, rangingfrom common to advanced and from natural to synthetic. By exploring ongoing research and developments in the environmentalremediation technologies using aerogel and its composites, this book addresses common day-to-day environmental problemsand presents solutions to the use of aerogel materials. The chapters discuss fabrication of various aerogel composites, alongwith their design and applications toward different environmental remediation technologies. Additionally, the properties andadvantages of aerogels are compared and contrasted to those of traditional materials. Given the consistent increase in environmental pollution, there is an urgent need to explore new materials for advances in remediationtechnology. Advances in Aerogel Composites for Environmental Remediation brings researchers and practitionersin the fields of environmental remediation, environmental science, and engineering to the forefront of remediation technologieswith a thorough breakdown of the benefits of and techniques relevant to aerogel composites. - Covers basic properties, unique properties, and fabrication techniques of aerogels, from basic silica aerogels topresent-day conventional aerogels - Discusses most of the major environmental remediation techniques and the advantages of using aerogels for theseremediation techniques in comparison to using traditional methods - Presents future prospects for utilizing aerogels in modern day-to-day life and in the fabrication of tangible new products




Comprehensive Inorganic Chemistry II


Book Description

Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973




Aerogels I


Book Description

This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation. The materials covered include nanocellulose-, porous-, silica-, hybrid silica-, carbon-, graphene- and magnetic aerogels. Ways of modulating the pore structure of aerogels are presented, as well as surface modifications and the application of coatings. Future perspectives focus on functional foods, thickeners, stabilizers, and scaffolding in tissue repair. Keywords: Aerogels, Nanocellulose Aerogels, Non-Silicate Aerogels, Organic Aerogels, Composite Hybrid Aerogels, Carbon-based and Graphene-based Aerogels, Biogels, Hybrid Silica-based Aerogels, Energy Storage, Thermal Storage, Catalysis, Water Splitting, Environmental Remediation, Absorbents, Gas Filters, Packaging Materials, Electrical Devices, Thermal Insulations, Fire Retardants, Pharmaceutical and Biomedical Applications, Functional Foods, Thickeners, Stabilizers, Scaffolding in Tissue Repair.




Nanocellulose and Sustainability


Book Description

Nanometre scale cellulose fibres, or nanocellulose, are emerging materials for various advanced applications. Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies provides a comprehensive overview of nanocellulose production, nanocellulose properties and nanocellulose in selected applications. This book serves as an entry level reference text for undergraduates, graduate students, researchers and professional engineers working in the area of nanocellulose and sustainability. Features: Summarises the surface and bulk properties of various types of nanocellulose Reviews the application of nanocellulose in water purification and optically transparent materials Provides an overview of nanocellulose as Pickering emulsifier, binder for loose natural fibres to produce non-woven preforms, as well as nanocellulose-based aerogels Presents a techno-economic analysis of industrial bacterial cellulose production Discusses the pilot scale production of cellulose nanocrystals




Materials Science and Information Technology II


Book Description

Selected, peer reviewed papers from the 2012 2nd International Conference on Materials Science and Information Technology (MSIT 2012), August 24-26, 2012, Xi’an, Shaan, China




Materials Science and Technologies II


Book Description

Selected peer-reviewed full text papers from the 5th International Conference on Sensors, Materials and Manufacturing (ICSMM 2021), and the 9th International Conference on Nanomaterials and Materials Engineering (ICNME 2021)