Aerospace Sensor Systems and Applications


Book Description

This book is about aerospace sensors, their principles of operation, and their typical advantages, shortcomings, and vulnerabilities. They are described in the framework of the subsystems where they function and in accordance with the flight mission they are designed to serve. The book is intended for students at the advanced undergraduate or graduate level and for research engineers who need to acquire this kind of knowledge. An effort has been made to explain, within a uniform framework of mathematical modeling, the physics upon which a certain sensor concept is based, its construction, its dynamics, and its error sources and their corresponding mathematical models. Equipped with such knowledge and understanding, the student or research engineer should be able to get involved in research and development activities of guidance, control, and navigation systems and to contribute to the initiation of novel ideas in the aerospace sensor field. As a designer and systems engineer, he should be able to correctly interpret the various items in a technical data list and thus to interact intelligently with manufacturers' representatives and other members of an R&D team. Much of the text has evolved from undergraduate and graduate courses given by the author during the past seventeen years at the Department of Aerospace Engineering at the Technion- Israel Institute of Technology and from his earlier research and development experience in flight control, guidance, navigation, and avionics at the Ministry of Defense Central Research Institute.




Aerospace Sensors


Book Description

Modern air and space craft demand a huge variety of sensing elements for detecting and controlling their behavior and operation. These sensors often differ significantly from those designed for applications in automobile, ship, railway, and other forms of transportation, and those used in industrial, chemical, medical, and other areas. This book offers insight into an appropriate selection of these sensors and describes their principles of operation, design, and achievable performance along with particulars of their construction. Drawn from the activities of the International Federation of Automatic Control (IFAC), especially its Aerospace Technical Committee, the book provides details on the majority of sensors for aircraft and many for spacecraft, satellites, and space probes. It is written by an international team of twelve authors representing four countries from Eastern and Western Europe and North America, all with considerable experience in aerospace sensor and systems design. Highlights include: • coverage of aerospace vehicle classification, specific design criteria, and the requirements of onboard systems and sensors; • reviews of airborne flight parameter sensors, weather sensors and collision avoidance devices; • discussions on the important role of inertial navigation systems (INS) and separate gyroscopic sensors for aerospace vehicle navigation and motion control; • descriptions of engine parameter information collection systems, including fuel quantity and consumption sensors, pressure pick-ups, tachometers, vibration control, and temperature sensors; and • descriptions and examples of sensor integration.




Sensors for Automotive and Aerospace Applications


Book Description

This volume covers the various sensors related to automotive and aerospace sectors, discussing their properties as well as how they are realized, calibrated and deployed. Written by experts in the field, it provides a ready reference to product developers, researchers and students working on sensor design and fabrication, and provides perspective on both current and future research.




Health Monitoring of Aerospace Structures


Book Description

Providing quality research for the reader, this title encompasses all the recent developments in smart sensor technology for health monitoring in aerospace structures, providing a valuable introduction to damage detection techniques. Focussing on engineering applications, all chapters are written by smart structures and materials experts from aerospace manufacturers and research/academic institutions. This key reference: Discusses the most important aspects related to smart technologies for damage detection; this includes not only monitoring techniques but also aspects related to specifications, design parameters, assessment and qualification routes. Presents real case studies and applications; this includes in-flight tests; the work presented goes far beyond academic research applications. Displays a balance between theoretical developments and engineering applications




Smart Sensor Systems


Book Description

With contributions from an internationally-renowned group of experts, this book uses a multidisciplinary approach to review recent developments in the field of smart sensor systems, covering important system and design aspects. It examines topics over the whole range of sensor technology from the theory and constraints of basic elements, physics and electronics, up to the level of application-orientated issues. Developed as a complementary volume to ‘Smart Sensor Systems’ (Wiley 2008), which introduces the basics of smart sensor systems, this volume focuses on emerging sensing technologies and applications, including: State-of-the-art techniques for designing smart sensors and smart sensor systems, including measurement techniques at system level, such as dynamic error correction, calibration, self-calibration and trimming. Circuit design for sensor systems, such as the design of precision instrumentation amplifiers. Impedance sensors, and the associated measurement techniques and electronics, that measure electrical characteristics to derive physical and biomedical parameters, such as blood viscosity or growth of micro-organisms. Complete sensor systems-on-a-chip, such as CMOS optical imagers and microarrays for DNA detection, and the associated circuit and micro-fabrication techniques. Vibratory gyroscopes and the associated electronics, employing mechanical and electrical signal amplification to enable low-power angular-rate sensing. Implantable smart sensors for neural interfacing in bio-medical applications. Smart combinations of energy harvesters and energy-storage devices for autonomous wireless sensors. Smart Sensor Systems: Emerging Technologies and Applications will greatly benefit final-year undergraduate and postgraduate students in the areas of electrical, mechanical and chemical engineering, and physics. Professional engineers and researchers in the microelectronics industry, including microsystem developers, will also find this a thorough and useful volume.




Sensor Systems


Book Description

This book covers sensors and multiple sensor systems, including sensor networks and multi-sensor data fusion. It presents the physics and principles of operation and discusses sensor selection, ratings and performance specifications, necessary hardware and software for integration into an engineering system and signal processing and data analysis. Additionally, it discusses parameter estimation, decision making and practical applications. Even though the book has all the features of a course textbook, it also contains a wealth of practical information on the subject.




Expanding the Vision of Sensor Materials


Book Description

Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.




Structural Health Monitoring Damage Detection Systems for Aerospace


Book Description

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.




Sensor Technology: Concepts, Methodologies, Tools, and Applications


Book Description

Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.




System Health Management


Book Description

System Health Management: with Aerospace Applications provides the first complete reference text for System Health Management (SHM), the set of technologies and processes used to improve system dependability. Edited by a team of engineers and consultants with SHM design, development, and research experience from NASA, industry, and academia, each heading up sections in their own areas of expertise and co-coordinating contributions from leading experts, the book collates together in one text the state-of-the-art in SHM research, technology, and applications. It has been written primarily as a reference text for practitioners, for those in related disciplines, and for graduate students in aerospace or systems engineering. There are many technologies involved in SHM and no single person can be an expert in all aspects of the discipline.System Health Management: with Aerospace Applications provides an introduction to the major technologies, issues, and references in these disparate but related SHM areas. Since SHM has evolved most rapidly in aerospace, the various applications described in this book are taken primarily from the aerospace industry. However, the theories, techniques, and technologies discussed are applicable to many engineering disciplines and application areas. Readers will find sections on the basic theories and concepts of SHM, how it is applied in the system life cycle (architecture, design, verification and validation, etc.), the most important methods used (reliability, quality assurance, diagnostics, prognostics, etc.), and how SHM is applied in operations (commercial aircraft, launch operations, logistics, etc.), to subsystems (electrical power, structures, flight controls, etc.) and to system applications (robotic spacecraft, tactical missiles, rotorcraft, etc.).