Algebraic Groups and their Representations


Book Description

This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups.




Representations of Reductive Groups


Book Description

This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.




The Brauer–Grothendieck Group


Book Description

This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.







Varieties of Representations of Finitely Generated Groups


Book Description

The n-dimensional representations, over an algebraically closed characteristic zero field k, of a finitely generated group are parameterized by an affine algebraic variety over k. The tangent spaces of this variety are subspaces of spaces of one-cocycles and thus the geometry of the variety is locally related to the cohomology of the group. The cohomology is also related to the prounipotent radical of the proalgebraic hull of the group. This paper exploits these two relations to compute dimensions of representation varieties, especially for nilpotent groups and their generalizations. It also presents the foundations of the theory of representation varieties in an expository, self-contained manner.