AI for Physics


Book Description

Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.




The Principles of Deep Learning Theory


Book Description

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.




Artificial Intelligence For High Energy Physics


Book Description

The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area.




The Simulation Hypothesis


Book Description

The Simulation Hypothesis, by best-selling author, renowned MIT computer scientist and Silicon Valley video game designer Rizwan Virk, is the first serious book to explain one of the most daring and consequential theories of our time. Riz is the Executive Director of Play Labs @ MIT, a video game startup incubator at the MIT Game Lab. Drawing from research and concepts from computer science, artificial intelligence, video games, quantum physics, and referencing both speculative fiction and ancient eastern spiritual texts, Virk shows how all of these traditions come together to point to the idea that we may be inside a simulated reality like the Matrix. The Simulation Hypothesis is the idea that our physical reality, far from being a solid physical universe, is part of an increasingly sophisticated video game-like simulation, where we all have multiple lives, consisting of pixels with its own internal clock run by some giant Artificial Intelligence. Simulation theory explains some of the biggest mysteries of quantum and relativistic physics, such as quantum indeterminacy, parallel universes, and the integral nature of the speed of light. Recently, the idea that we may be living in a giant video game has received a lot of attention: “There’s a one in a billion chance we are not living in a simulation” -Elon Musk “I find it hard to argue we are not in a simulation.” -Neil deGrasse Tyson “We are living in computer generated reality.” -Philip K. Dick Video game technology has developed from basic arcade and text adventures to MMORPGs. Video game designer Riz Virk shows how these games may continue to evolve in the future, including virtual reality, augmented reality, Artificial Intelligence, and quantum computing. This book shows how this evolution could lead us to the point of being able to develop all encompassing virtual worlds like the Oasis in Ready Player One, or the simulated reality in the Matrix. While the idea sounds like science fiction, many scientists, engineers, and professors have given the Simulation Hypothesis serious consideration. Futurist Ray Kurzweil has popularized the idea of downloading our consciousness into a silicon based device, which would mean we are just digital information after all. Some, like Oxford lecturer Nick Bostrom, goes further and thinks we may in fact be artificially intelligent consciousness inside such a simulation already! But the Simulation Hypothesis is not just a modern idea. Philosophers like Plato have been telling us that we live in a “cave” and can only see shadows of the real world. Mystics of all traditions have long contended that we are living in some kind of “illusion “and that there are other realities which we can access with our minds. While even Judeo-Christian traditions have this idea, Eastern traditions like Buddhism and Hinduism make this idea part of their core tradition — that we are inside a dream world (“Maya” or illusion, or Vishnu’s Dream), and we have “multiple lives” playing different characters when one dies, continuing to gain experience and “level up” after completing certain challenges. Sounds a lot like a video game! Whether you are a computer scientist, a fan of science fiction like the Matrix movies, a video game enthusiast, or a spiritual seeker, The Simulation Hypothesis touches on all these areas, and you will never look at the world the same way again!




Physics of Data Science and Machine Learning


Book Description

Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.




Intelligent Learning Environments and Knowledge Acquisition in Physics


Book Description

The NATO workshop ''Knowledge acquisition in the domain of physics and intelligent learning environments" was held in Lyon, France, July 8-12, 1990. A total of 31 researchers from Europe (France, Germany, Greece, Italy, Portugal, and the U. K. ), the U. S. A. , and Japan worked together. This proceedings volume contains most of the contributions to the workshop. The papers show clearly the main directions of research in intelligent learning environments. They display a variety of points of view depending on the researcher's own background even when a single domain of teaching, namely physics, is considered. We acknowledge the assistance of Michael Baker, who was responsible for reviewing the English of the contributions. February 1992 Andree TIberghien Heinz Mandl Table of Contents Introduction 1 1. Teaching Situations and Physics Knowledge Introductory University Courses and Open Environment Approaches: The Computer as a Multi-role Mediator in Teaching/Learning Physics 5 E. Balzano, P. Guidoni, M. Moretti, E. Sassi, G. Sgueglia Practical Work Aid: Knowledge Representation in a Model Based AI System 21 J. Courtois Simultaneous Processing of Different Problem Aspects in Expert Problem Solving: An Analysis in the Domain of Physics on the Basis of Formal Theories of Commonsense Knowledge 35 A. Hron Modelis: An Artificial Intelligence System Which Models Thermodynamics Textbook Problems 47 G. Tisseau 2. Different Approaches to Student Modelling Steps Towards the Formalisation of a Psycho-logic of Motion 65 J. Bliss, J.




Quantum Physics and Artificial Intelligence in the 21st Century


Book Description

What happens when we look at two of the most important sciences of today, quantum physics and artificial intelligence, through Chinese eyes?We see that the Chinese developed an esthetic theory about space and time centuries before Albert Einstein developed Relativity Theory. We also understand why the Chinese world view inspired quantum mechanics pioneers Niels Bohr and Werner Heisenberg, psychoanalyst Carl Jung and the leading figures of the spiritually focused New Age movement.A fresh look at China's ancient world view can even help us understand why binary code inventor Gottfried Leibniz argued that the Chinese invented the first binary code. The Chinese used different symbols - broken and unbroken lines instead of 0 and 1 - but Leibniz claimed the underlying principle was the same. Leibniz is the "spiritual" father of AI and the first to propose the "mechanization" of thought.AI and quantum mechanics are confronted with similar questions: Is nature continuous or discrete, wave or particle, analog or digital? How will AI address this dichotomy? Can the Chinese world view shed light on this unresolved mystery?In the 21st century, China is likely to make its presence felt throughout the world. Understanding its ancient world view can help us anticipate this influence and it may show us the contours of the future of AI, arguably the last "hard" science humanity will ever need."This book contains fascinating stories largely unknown, a history of Western scientific ideas, an insightful interpretation of ancient Chinese culture, and mind-expanding connections between East and West, art and technology, past and future. A unique play of creative ideas!"Bill Kelly, Lecturer in Intercultural Communication, UCLA (ret.)




Physics of the Future


Book Description

NATIONAL BESTSELLER • The renowned theoretical physicist and national bestselling author of The God Equation details the developments in computer technology, artificial intelligence, medicine, space travel, and more, that are poised to happen over the next century. “Mind-bending…. [An] alternately fascinating and frightening book.” —San Francisco Chronicle Space elevators. Internet-enabled contact lenses. Cars that fly by floating on magnetic fields. This is the stuff of science fiction—it’s also daily life in the year 2100. Renowned theoretical physicist Michio Kaku considers how these inventions will affect the world economy, addressing the key questions: Who will have jobs? Which nations will prosper? Kaku interviews three hundred of the world’s top scientists—working in their labs on astonishing prototypes. He also takes into account the rigorous scientific principles that regulate how quickly, how safely, and how far technologies can advance. In Physics of the Future, Kaku forecasts a century of earthshaking advances in technology that could make even the last centuries’ leaps and bounds seem insignificant.




The Future of Humanity


Book Description

NEW YORK TIMES BESTSELLER • The national bestselling author of The God Equation traverses the frontiers of astrophysics, artificial intelligence, and technology to offer a stunning vision of man's future in space, from settling Mars to traveling to distant galaxies. “Amazing … Kaku is in smooth perfect control of it the entire time.” —The Christian Science Monitor We are entering a new Golden Age of space exploration. With irrepressible enthusiasm and a deep understanding of the cutting-edge research in space travel, world-renowned physicist and futurist Dr. Michio Kaku presents a compelling vision of how humanity may develop a sustainable civilization in outer space. He reveals the developments in robotics, nanotechnology, and biotechnology that may allow us to terraform and build habitable cities on Mars and beyond. He then journeys out of our solar system and discusses how new technologies such as nanoships, laser sails, and fusion rockets may actually make interstellar travel a possibility. We travel beyond our galaxy, and even beyond our universe, as Kaku investigates some of the hottest topics in science today, including warp drive, wormholes, hyperspace, parallel universes, and the multiverse. Ultimately, he shows us how humans may someday achieve a form of immortality and be able to leave our bodies entirely, laser porting to new havens in space.




Quantum Physics


Book Description

This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.