Theoretical Foundations of Artificial General Intelligence


Book Description

This book is a collection of writings by active researchers in the field of Artificial General Intelligence, on topics of central importance in the field. Each chapter focuses on one theoretical problem, proposes a novel solution, and is written in sufficiently non-technical language to be understandable by advanced undergraduates or scientists in allied fields. This book is the very first collection in the field of Artificial General Intelligence (AGI) focusing on theoretical, conceptual, and philosophical issues in the creation of thinking machines. All the authors are researchers actively developing AGI projects, thus distinguishing the book from much of the theoretical cognitive science and AI literature, which is generally quite divorced from practical AGI system building issues. And the discussions are presented in a way that makes the problems and proposed solutions understandable to a wide readership of non-specialists, providing a distinction from the journal and conference-proceedings literature. The book will benefit AGI researchers and students by giving them a solid orientation in the conceptual foundations of the field (which is not currently available anywhere); and it would benefit researchers in allied fields by giving them a high-level view of the current state of thinking in the AGI field. Furthermore, by addressing key topics in the field in a coherent way, the collection as a whole may play an important role in guiding future research in both theoretical and practical AGI, and in linking AGI research with work in allied disciplines




The Foundations of Artificial Intelligence


Book Description

This outstanding collection is designed to address the fundamental issues and principles underlying the task of Artificial Intelligence.




AI Foundations of Artificial General Intelligence


Book Description

Dive into the pioneering realm of Artificial General Intelligence with Jon Adams'sAI Foundations of Artificial General Intelligence (AGI), the first installment of the enlightening Foundations Of series. This groundbreaking book serves as a comprehensive guide to the evolving field of AI, offering a deep dive into the quest for Artificial General Intelligence (AGI) – a frontier of technology aiming to create machines that rival human intelligence in their versatility and creativity. Structured in a reader-friendly format, this book covers an impressive array of topics: The Genesis of AI: Explore the origins and evolution of artificial intelligence, setting the stage for a journey towards AGI. Understanding Machine Learning: Get to grips with the core concepts and techniques that fuel the growth of AI. Neural Networks and Deep Learning: Delve into the architectures that mimic the human brain's functionality. Cognitive Architectures – A Blueprint for AGI: Understand the frameworks designed to support the development of AGI. Narrow AI vs General AI: Learn about the differences between AI for specific tasks and the envisioned AGI capable of human-like reasoning. Defining Human-Like Intelligence: Investigate what it means for a machine to possess intelligence indistinguishable from humans. Computer Science Meets Neuroscience: Discover the intersection between computational models and the complexities of the human brain. Challenges in Replicating Human Thought: Examine the hurdles in simulating human cognitive processes. Toward the Future of AGI: Speculate on the potential directions and implications of achieving AGI. AGI and Human Identity – Redefining the Species: Reflect on how AGI could transform our understanding of human identity. Preempting Skynet – Safeguarding Against AGI Risks: Address the ethical considerations and safety measures in the development of AGI. AI Foundations of AGI is meticulously crafted for both novices and seasoned enthusiasts of artificial intelligence. Adams simplifies complex concepts without sacrificing depth, making advanced topics in AI and AGI accessible to all. This book not only sheds light on the technical aspects of AI development but also encourages readers to ponder the philosophical implications of creating machines with human-like intelligence. Whether you're a student, professional, or simply curious about the future of AI, this book offers valuable insights into the ambitious goal of achieving AGI. Join Jon Adams on a captivating exploration of AI's potential to redefine our world, armed with the knowledge and foresight to navigate the challenges and opportunities that lie ahead.




Handbook of Knowledge Representation


Book Description

Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily




Logical Foundations of Artificial Intelligence


Book Description

Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.




Fundamentals of Artificial Intelligence


Book Description

Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.




Foundations of Artificial Intelligence


Book Description

In the 11 contributions, theorists historically associated with each position identify the basic tenets of their position.Have the classical methods and ideas of AI outlived their usefulness? Foundations of Artificial Intelligence critically evaluates the fundamental assumptions underpinning the dominant approaches to AI. In the 11 contributions, theorists historically associated with each position identify the basic tenets of their position. They discuss the underlying principles, describe the natural types of problems and tasks in which their approach succeeds, explain where its power comes from, and what its scope and limits are. Theorists generally skeptical of these positions evaluate the effectiveness of the method or approach and explain why it works - to the extent they believe it does - and why it eventually fails.ContentsFoundations of AI: The Big Issues, D. Kirsh - Logic and Artificial Intelligence, N. J. Nilsson - Rigor Mortis: A Response to Nilsson's 'Logic and Artificial Intelligence, ' L. Birnbaum - Open Information Systems Semantics for Distributed Artificial Intelligence, C. Hewitt - Social Conceptions of Knowledge and Action: DAI Foundations and Open Systems Semantics, L. Gasser - Intelligence without Representation, R. A. Brooks - Today the Earwig, Tomorrow Man? D. Kirsh - On the Thresholds of Knowledge, D. B. Lenat, E. A. Feigenbaum - The Owl and the Electric Encyclopedia, B. C. Smith - A Preliminary Analysis of the Soar Architecture as a Basis for General Intelligence, P. S. Rosenbloom, J. E. Laird, A. Newell, R. McCarl - Approaches to the Study of Intelligence, D. A. Norman




Artificial Intelligence


Book Description

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.




Artificial Intelligence Basics


Book Description

Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and many more. In our modern era, an understanding of AI and its possibilities for your organization is essential for growth and success. Artificial Intelligence Basics has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life. Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and Artificial Intelligence Basics is the indispensable guide that you’ve been seeking. What You Will Learn Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing)Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch FixUnderstand how AI capabilities for robots can improve businessDeploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer serviceAvoid costly gotchasRecognize ethical concerns and other risk factors of using artificial intelligenceExamine the secular trends and how they may impact your business Who This Book Is For Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.




The Cambridge Handbook of Artificial Intelligence


Book Description

An authoritative, up-to-date survey of the state of the art in artificial intelligence, written for non-specialists.