Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




History of On-Orbit Satellite Fragmentations (14th Edition)


Book Description

Includes full color illustrations. Since the first serious satellite fragmentation occurred in June 1961 (which instantaneously increased the total Earth satellite population by more than 400%) the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970s and the marked increase in the number of fragmentations in the 1980s served to widen international research into the characteristics and consequences of such events. Continued events in all orbits in later years make definition and historical accounting of those events crucial to future research. Large, manned space stations and the growing number of operational robotic satellites demand a better understanding of the hazards of the dynamic Earth satellite population.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




NASA SP.


Book Description




Reliability and Maintainability (RAM) Training


Book Description

The theme of this manual is failure physics - the study of how products, hardware, software, and systems fail and what can be done about it. The intent is to impart useful information, to extend the limits of production capability, and to assist in achieving low-cost reliable products. In a broader sense the manual should do more. It should underscore the urgent need for mature attitudes toward reliability. Five of the chapters were originally presented as a classroom course to over 1000 Martin Marietta engineers and technicians. Another four chapters and three appendixes have been added. We begin with a view of reliability from the years 1940 to 2000. Chapter 2 starts the training material with a review of mathematics and a description of what elements contribute to product failures. The remaining chapters elucidate basic reliability theory and the disciplines that allow us to control and eliminate failures.




Aeronautical Engineer's Data Book


Book Description

Aeronautical Engineer's Data Bookis an essential handy guide containing useful up to date information regularly needed by the student or practising engineer. Covering all aspects of aircraft, both fixed wing and rotary craft, this pocket book provides quick access to useful aeronautical engineering data and sources of information for further in-depth information. - Quick reference to essential data - Most up to date information available




Heat Transfer and Boundary Layer in Conical Nozzles


Book Description

A review of a comprehensive experimental investigation of the heat transfer and boundary layer in 30 deg to 15 deg and 60 deg to 15 deg conical nozzles is presented. The experiments were conducted with air at a stagnation temperature of 539 K (970 R) and throat Reynolds numbers based on a diameter ranging from 6 x 10 to the 5th power to 5 x 10 to the 6th power. Nozzle wall surface finish was varied from a smooth machine finish to a 826 x 10 to the minus 6th power cm (325 x 10 to the minus 6th in.) rms sandblasted finish. Measured heat transfer and wall temperatures are tabulated.




NASA SP.


Book Description