Aircraft Design for Reduced Climate Impact


Book Description

Aircraft affect global climate through emissions of greenhouse gases and their precursors and by altering cirrus cloudiness. Changes in operations and design of future aircraft may be necessary to meet goals for limiting climate change. One method for reducing climate impacts involves designing aircraft to fly at altitudes where the impacts of NOx emissions are less severe and persistent contrail formation is less likely. By considering these altitude effects and additionally applying climate mitigation technologies, impacts can be reduced by 45-70% with simultaneous savings in total operating costs. Uncertainty is assessed, demonstrating that relative climate impact savings can be expected despite large scientific uncertainties. Strategies for improving climate performance of existing aircraft are also explored, revealing potential climate impact savings of 20-40%, traded for a 2% increase in total operating costs and reduced maximum range.




Climate Change and Aviation


Book Description

'This is a timely, challenging and fascinating book on a topic of central importance to the success or otherwise of our climate change policies. It sets down a clear marker for what has to be done in the aviation sector.' Professor John Whitelegg, Stockholm Environment Institute, University of York, UK 'Climate Change and Aviation presents a clear picture of the transport sector's greatest challenge: how to reconcile aviation's immense popularity with its considerable environmental damage and its dependence on liquid hydrocarbon energy sources. This book avoids wishful thinking and takes the much harder, but more productive, path of considering difficult solutions that clash with short-term and short-sighted expectations about the unlimited growth potential for flying.' Professor Anthony Perl, Urban Studies Program, Simon Fraser University, Canada 'A convincing and timely collection that brings together an impressive range of expertise. The book integrates various perspectives into a powerful core argument - we must do something, and quickly, to tackle the impact of aviation on our environment. The authors recognise the political difficulties associated with promoting change but present constructive options for policy makers. Required reading, especially for transport ministers set on promoting the growth of air travel.' Professor Jon Shaw, Director of the Centre for Sustainable Transport, University of Plymouth, UK Trends such as the massive growth in availability of air travel and air freight are among those which have led to aviation becoming one of the fastest growing emitters of greenhouse gases. These trends have also caused a shift in expectations of how we do business, where we go on holiday, and what food and goods we can buy. For these reasons aviation is (and is set to stay) high up on global political, organizational and media agendas. This textbook is the first to attempt a comprehensive review of the topic, bringing together an international team of leading scientists. Starting with the science of the environmental issues, it moves on to cover drivers and trends of growth, socio-economics and politics, as well as mitigation options, the result being a broad yet detailed examination of the field. This is essential reading for undergraduate and postgraduate courses in transport, tourism, the environment, geography and beyond, while also being a valuable resource for professionals and policymakers seeking a clear understanding of this complex yet urgently pressing issue.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.







Green Aviation


Book Description

Green Aviation is the first authoritative overview of both engineering and operational measures to mitigate the environmental impact of aviation. It addresses the current status of measures to reduce the environmental impact of air travel. The chapters cover such items as: Engineering and technology-related subjects (aerodynamics, engines, fuels, structures, etc.), Operations (air traffic management and infrastructure) Policy and regulatory aspects regarding atmospheric and noise pollution. With contributions from leading experts, this volume is intended to be a valuable addition, and useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.




Global Physical Climatology


Book Description

Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices




Life Cycle Assessment


Book Description

This book is a uniquely pedagogical while still comprehensive state-of-the-art description of LCA-methodology and its broad range of applications. The five parts of the book conveniently provide: I) the history and context of Life Cycle Assessment (LCA) with its central role as quantitative and scientifically-based tool supporting society’s transitioning towards a sustainable economy; II) all there is to know about LCA methodology illustrated by a red-thread example which evolves as the reader advances; III) a wealth of information on a broad range of LCA applications with dedicated chapters on policy development, prospective LCA, life cycle management, waste, energy, construction and building, nanotechnology, agrifood, transport, and LCA-related concepts such as footprinting, ecolabelling,design for environment, and cradle to cradle. IV) A cookbook giving the reader recipes for all the concrete actions needed to perform an LCA. V) An appendix with an LCA report template, a full example LCA report serving as inspiration for students who write their first LCA report, and a more detailed overview of existing LCIA methods and their similarities and differences.




Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design


Book Description

This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia". The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry.




For Greener Skies


Book Description

Each new generation of commercial aircraft produces less noise and fewer emissions per passenger-kilometer (or ton-kilometer of cargo) than the previous generation. However, the demand for air transportation services grows so quickly that total aircraft noise and emissions continue to increase. Meanwhile, federal, state, and local noise and air quality standards in the United States and overseas have become more stringent. It is becoming more difficult to reconcile public demand for inexpensive, easily accessible air transportation services with concurrent desires to reduce noise, improve local air quality, and protect the global environment against climate change and depletion of stratospheric ozone. This situation calls for federal leadership and strong action from industry and government. U.S. government, industry, and universities conduct research and develop technology that could help reduce aircraft noise and emissions-but only if the results are used to improve operational systems or standards. For example, the (now terminated) Advanced Subsonic Technology Program of the National Aeronautics and Space Administration (NASA) generally brought new technology only to the point where a system, subsystem model, or prototype was demonstrated or could be validated in a relevant environment. Completing the maturation process-by fielding affordable, proven, commercially available systems for installation on new or modified aircraft-was left to industry and generally took place only if industry had an economic or regulatory incentive to make the necessary investment. In response to this situation, the Federal Aviation Administration, NASA, and the Environmental Protection Agency, asked the Aeronautics and Space Engineering Board of the National Research Council to recommend research strategies and approaches that would further efforts to mitigate the environmental effects (i.e., noise and emissions) of aviation. The statement of task required the Committee on Aeronautics Research and Technology for Environmental Compatibility to assess whether existing research policies and programs are likely to foster the technological improvements needed to ensure that environmental constraints do not become a significant barrier to growth of the aviation sector.




Growing Cooler


Book Description

Based on a comprehensive study review by leading urban planning researchers, this investigative document demonstrates how urban development is both a key contributor to climate change and an essential factor in combating it -- by reducing vehicle greenhouse gas emissions.