Common Core Algebra I


Book Description




A Study in Derived Algebraic Geometry


Book Description

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in other parts of mathematics, most prominently in representation theory. This volume develops deformation theory, Lie theory and the theory of algebroids in the context of derived algebraic geometry. To that end, it introduces the notion of inf-scheme, which is an infinitesimal deformation of a scheme and studies ind-coherent sheaves on such. As an application of the general theory, the six-functor formalism for D-modules in derived geometry is obtained. This volume consists of two parts. The first part introduces the notion of ind-scheme and extends the theory of ind-coherent sheaves to inf-schemes, obtaining the theory of D-modules as an application. The second part establishes the equivalence between formal Lie group(oids) and Lie algebr(oids) in the category of ind-coherent sheaves. This equivalence gives a vast generalization of the equivalence between Lie algebras and formal moduli problems. This theory is applied to study natural filtrations in formal derived geometry generalizing the Hodge filtration.







Structure Theorems of Unit Groups


Book Description

This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.




Emerging Applications of Algebraic Geometry


Book Description

Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.




Mathematical Optimization Theory and Operations Research


Book Description

This book constitutes revised and selected papers from the 18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019, held in Ekaterinburg, Russia, in July 2019. The 40 full papers and 4 short papers presented in this volume were carefully reviewed and selected from a total of 170 submissions. The papers in the volume are organised according to the following topical headings: ​combinatorial optimization; game theory and mathematical economics; data mining and computational geometry; integer programming; mathematical programming; operations research; optimal control and applications.




Unit Equations in Diophantine Number Theory


Book Description

Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.




DOD Pam


Book Description




Holomorphic Curves in Low Dimensions


Book Description

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019