Algebra in Context


Book Description

An engaging new approach to teaching algebra that takes students on a historical journey from its roots to modern times. This book’s unique approach to the teaching of mathematics lies in its use of history to provide a framework for understanding algebra and related fields. With Algebra in Context, students will soon discover why mathematics is such a crucial part not only of civilization but also of everyday life. Even those who have avoided mathematics for years will find the historical stories both inviting and gripping. The book’s lessons begin with the creation and spread of number systems, from the mathematical development of early civilizations in Babylonia, Greece, China, Rome, Egypt, and Central America to the advancement of mathematics over time and the roles of famous figures such as Descartes and Leonardo of Pisa (Fibonacci). Before long, it becomes clear that the simple origins of algebra evolved into modern problem solving. Along the way, the language of mathematics becomes familiar, and students are gradually introduced to more challenging problems. Paced perfectly, Amy Shell-Gellasch and J. B. Thoo’s chapters ease students from topic to topic until they reach the twenty-first century. By the end of Algebra in Context, students using this textbook will be comfortable with most algebra concepts, including • Different number bases • Algebraic notation • Methods of arithmetic calculation • Real numbers • Complex numbers • Divisors • Prime factorization • Variation • Factoring • Solving linear equations • False position • Solving quadratic equations • Solving cubic equations • nth roots • Set theory • One-to-one correspondence • Infinite sets • Figurate numbers • Logarithms • Exponential growth • Interest calculations




Mathematics in Historical Context


Book Description

What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.




Category Theory in Context


Book Description

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.




Modern Algebra


Book Description

Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.




A First Book in Algebra


Book Description




A Book of Abstract Algebra


Book Description

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.




Algebra: Chapter 0


Book Description

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.




The Mathematics of Frobenius in Context


Book Description

Frobenius made many important contributions to mathematics in the latter part of the 19th century. Hawkins here focuses on his work in linear algebra and its relationship with the work of Burnside, Cartan, and Molien, and its extension by Schur and Brauer. He also discusses the Berlin school of mathematics and the guiding force of Weierstrass in that school, as well as the fundamental work of d'Alembert, Lagrange, and Laplace, and of Gauss, Eisenstein and Cayley that laid the groundwork for Frobenius's work in linear algebra. The book concludes with a discussion of Frobenius's contribution to the theory of stochastic matrices.




A Course in Linear Algebra


Book Description

"Suitable for advanced undergraduates and graduate students, this text introduces basic concepts of linear algebra. Each chapter contains an introduction, definitions, and propositions, in addition to multiple examples, lemmas, theorems, corollaries, andproofs. Each chapter features numerous supplemental exercises, and solutions to selected problems appear at the end. 1988 edition"--




Abstract Algebra


Book Description

Excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. Features many examples and problems.