Algebraic Analysis of Solvable Lattice Models


Book Description

Based on the NSF-CBMS Regional Conference lectures presented by Miwa in June 1993, this book surveys recent developments in the interplay between solvable lattice models in statistical mechanics and representation theory of quantum affine algebras. Because results in this subject were scattered in the literature, this book fills the need for a systematic account, focusing attention on fundamentals without assuming prior knowledge about lattice models or representation theory. After a brief account of basic principles in statistical mechanics, the authors discuss the standard subjects concerning solvable lattice models in statistical mechanics, the main examples being the spin 1/2 XXZ chain and the six-vertex model. The book goes on to introduce the main objects of study, the corner transfer matrices and the vertex operators, and discusses some of their aspects from the viewpoint of physics. Once the physical motivations are in place, the authors return to the mathematics, covering the Frenkel-Jing bosonization of a certain module, formulas for the vertex operators using bosons, the role of representation theory, and correlation functions and form factors. The limit of the XXX model is briefly discussed, and the book closes with a discussion of other types of models and related works.




Representations of Groups


Book Description

Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.




Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis


Book Description

This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.




Planar Ising Correlations


Book Description

Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory.




Algebraic Analysis


Book Description

Algebraic Analysis: Papers Dedicated to Professor Mikio Sato on the Occasion of his 60th Birthday, Volume I is a collection of research papers on algebraic analysis and related topics in honor to Professor Mikio Sato's 60th birthday. This volume is composed of 35 chapters and begins with papers concerning Sato's early career in algebraic analysis. The succeeding chapters deal with research works on the existence of local holomorphic solutions, the holonomic q-difference systems, partial differential equations, and the properties of solvable models. Other chapters explore the fundamentals of hypergeometric functions, the Toda lattice in the complex domain, the Lie algebras, b-functions, p-adic integrals, analytic parameters of hyperfunctions, and some applicatioins of microlocal energy methods to analytic hypoeellipticity. This volume also presents studies on the complex powers of p-adic fields, operational calculus, extensions of microfunction sheaves up to the boundary, and the irregularity of holonomic modules. The last chapters feature research works on error analysis of quadrature formulas obtained by variable transformation and the analytic functional on the complex light cone, as well as their Fourier-Borel transformations. This book will prove useful to mathematicians and advance mathematics students.




Recent Developments in Quantum Affine Algebras and Related Topics


Book Description

This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.







Wave Packet Analysis


Book Description

The concept of ``wave packet analysis'' originates in Carleson's famous proof of almost everywhere convergence of Fourier series of $L2$ functions. It was later used by Lacey and Thiele to prove bounds on the bilinear Hilbert transform. For quite some time, Carleson's wave packet analysis was thought to be an important idea, but that it had limited applications. But in recent years, it has become clear that this is an important tool for a number of other applications. This book isan introduction to these tools. It emphasizes the classical successes (Carleson's theorem and the Hilbert transform) in the main development. However, the book closes with a dedicated chapter on more recent results. Carleson's original theorem is sometimes cited as one of the most importantdevelopments of 20th century harmonic analysis. The set of ideas stemming from his proof is now seen as an essential element in modern harmonic analysis. Indeed, Thiele won the Salem prize jointly with Michael Lacey for work in this area. The book gives a nice survey of important material, such as an overview of the theory of singular integrals and wave packet analysis itself. There is a separate chapter on ``further developments'', which gives a broader view on the subject, though it does notexhaust all ongoing developments.




Modern Trends in Algebra and Representation Theory


Book Description

Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.




Lectures on Hilbert Cube Manifolds


Book Description

The goal of these lectures is to present an introduction to the geometric topology of the Hilbert cube Q and separable metric manifolds modeled on Q, which are called here Hilbert cube manifolds or Q-manifolds. In the past ten years there has been a great deal of research on Q and Q-manifolds which is scattered throughout several papers in the literature. The author presents here a self-contained treatment of only a few of these results in the hope that it will stimulate further interest in this area. No new material is presented here and no attempt has been made to be complete. For example, the author has omitted the important theorem of Schori-West stating that the hyperspace of closed subsets of $[0,1]$ is homeomorphic to Q.In an appendix (prepared independently by R. D. Anderson, D. W. Curtis, R. Schori and G. Kozlowski) there is a list of problems which are of current interest. This includes problems on Q-manifolds as well as manifolds modeled on various linear spaces. The reader is referred to this for a much broader perspective of the field. In the first four chapters, the basic tools which are needed in all of the remaining chapters are presented. Beyond this there seem to be at least two possible courses of action. The reader who is interested only in the triangulation and classification of Q-manifolds should read straight through (avoiding only Chapter VI). In particular the topological invariance of Whitehead torsion appears in Section 38. The reader who is interested in R. D. Edwards' recent proof that every ANR is a Q-manifold factor should read the first four chapters and then (with the single exception of 26.1) skip over to Chapters XIII and XIV.