Book Description
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Author : Amnon Neeman
Publisher : Cambridge University Press
Page : 433 pages
File Size : 44,84 MB
Release : 2007-09-13
Category : Mathematics
ISBN : 0521709830
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Author : Amnon Neeman
Publisher :
Page : 434 pages
File Size : 50,49 MB
Release : 2007
Category : Electronic books
ISBN : 9781107365469
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
Author : Carl B. Boyer
Publisher : Courier Corporation
Page : 306 pages
File Size : 38,56 MB
Release : 2012-06-28
Category : Mathematics
ISBN : 0486154513
This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850. 1956 edition. Analytical bibliography. Index.
Author : Theo de Jong
Publisher : Springer Science & Business Media
Page : 395 pages
File Size : 28,46 MB
Release : 2013-06-29
Category : Mathematics
ISBN : 3322901599
Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen für konvergente Potenzreihenringe, Approximationssätze, Grauerts Satz über die Existenz der versellen Deformation. Das Buch richtet sich an Studenten höherer Semester, Doktoranden und Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an den Universitäten in Kaiserslautern und Saarbrücken entstanden.
Author : Giovanni Landi
Publisher : Springer
Page : 348 pages
File Size : 47,99 MB
Release : 2018-05-12
Category : Science
ISBN : 3319783610
A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
Author : Jean Fresnel
Publisher : Springer Science & Business Media
Page : 303 pages
File Size : 17,82 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461200415
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Author : Dirk J. Struik
Publisher : Courier Corporation
Page : 306 pages
File Size : 14,41 MB
Release : 2011-10-24
Category : Mathematics
ISBN : 0486485951
This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.
Author : Vladimir G. Berkovich
Publisher : American Mathematical Soc.
Page : 181 pages
File Size : 30,61 MB
Release : 2012-08-02
Category : Mathematics
ISBN : 0821890204
The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.
Author : Robin Hartshorne
Publisher : Springer Science & Business Media
Page : 511 pages
File Size : 49,16 MB
Release : 2013-06-29
Category : Mathematics
ISBN : 1475738498
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Author : Gerd Fischer
Publisher : Springer
Page : 208 pages
File Size : 14,90 MB
Release : 2006-11-14
Category : Mathematics
ISBN : 354038121X