Algebraic Set Theory


Book Description

This book offers a new algebraic approach to set theory. The authors introduce a particular kind of algebra, the Zermelo-Fraenkel algebras, which arise from the familiar axioms of Zermelo-Fraenkel set theory. Furthermore, the authors explicitly construct these algebras using the theory of bisimulations. Their approach is completely constructive, and contains both intuitionistic set theory and topos theory. In particular it provides a uniform description of various constructions of the cumulative hierarchy of sets in forcing models, sheaf models and realizability models. Graduate students and researchers in mathematical logic, category theory and computer science should find this book of great interest, and it should be accessible to anyone with a background in categorical logic.




A Book of Set Theory


Book Description

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--




Labyrinth of Thought


Book Description

"José Ferreirós has written a magisterial account of the history of set theory which is panoramic, balanced, and engaging. Not only does this book synthesize much previous work and provide fresh insights and points of view, but it also features a major innovation, a full-fledged treatment of the emergence of the set-theoretic approach in mathematics from the early nineteenth century. This takes up Part One of the book. Part Two analyzes the crucial developments in the last quarter of the nineteenth century, above all the work of Cantor, but also Dedekind and the interaction between the two. Lastly, Part Three details the development of set theory up to 1950, taking account of foundational questions and the emergence of the modern axiomatization." (Bulletin of Symbolic Logic)




Set Theory and Logic


Book Description

Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.




Set Theory: The Structure of Arithmetic


Book Description

This text is formulated on the fundamental idea that much of mathematics, including the classical number systems, can best be based on set theory. 1961 edition.




Toposes and Local Set Theories


Book Description

This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.




Introduction To Set Theory


Book Description

This book Introduction to Set Theory is very important in the field of modern algebra. It is very important to study this book to study modern mathematics. This book contain preliminary Notation, Sets, Subsets, Mapping Function and Relation. This book is useful to the students of under graduate, post graduate students and the candidate appearing in various competitions like pre Engineering/I.A.S/ P.C.S. etc. Contents: Preliminary Notation, Relations, Product or Composite of Mapping, Mapping or Functions




Model Theory and Algebraic Geometry


Book Description

This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.




Basic Category Theory


Book Description

A short introduction ideal for students learning category theory for the first time.




An Introduction to Algebraic Structures


Book Description

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.