Algorithmic Cryptanalysis


Book Description

Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a




Computational Cryptography


Book Description

The area of computational cryptography is dedicated to the development of effective methods in algorithmic number theory that improve implementation of cryptosystems or further their cryptanalysis. This book is a tribute to Arjen K. Lenstra, one of the key contributors to the field, on the occasion of his 65th birthday, covering his best-known scientific achievements in the field. Students and security engineers will appreciate this no-nonsense introduction to the hard mathematical problems used in cryptography and on which cybersecurity is built, as well as the overview of recent advances on how to solve these problems from both theoretical and practical applied perspectives. Beginning with polynomials, the book moves on to the celebrated Lenstra-Lenstra-Lovász lattice reduction algorithm, and then progresses to integer factorization and the impact of these methods to the selection of strong cryptographic keys for usage in widely used standards.




Modern Cryptanalysis


Book Description

As an instructor at the University of Tulsa, Christopher Swenson could find no relevant text for teaching modern cryptanalysis?so he wrote his own. This is the first book that brings the study of cryptanalysis into the 21st century. Swenson provides a foundation in traditional cryptanalysis, examines ciphers based on number theory, explores block ciphers, and teaches the basis of all modern cryptanalysis: linear and differential cryptanalysis. This time-honored weapon of warfare has become a key piece of artillery in the battle for information security.




Algorithmic Strategies for Solving Complex Problems in Cryptography


Book Description

Cryptography is a field that is constantly advancing, due to exponential growth in new technologies within the past few decades. Applying strategic algorithms to cryptic issues can help save time and energy in solving the expanding problems within this field. Algorithmic Strategies for Solving Complex Problems in Cryptography is an essential reference source that discusses the evolution and current trends in cryptology, and it offers new insight into how to use strategic algorithms to aid in solving intricate difficulties within this domain. Featuring relevant topics such as hash functions, homomorphic encryption schemes, two party computation, and integer factoring, this publication is ideal for academicians, graduate students, engineers, professionals, and researchers interested in expanding their knowledge of current trends and techniques within the cryptology field.




Cryptanalysis


Book Description

Includes "166 cryptograms."




A Methodology for the Cryptanalysis of Classical Ciphers with Search Metaheuristics


Book Description

Cryptography, the art and science of creating secret codes, and cryptanalysis, the art and science of breaking secret codes, underwent a similar and parallel course during history. Both fields evolved from manual encryption methods and manual codebreaking techniques, to cipher machines and codebreaking machines in the first half of the 20th century, and finally to computerbased encryption and cryptanalysis from the second half of the 20th century. However, despite the advent of modern computing technology, some of the more challenging classical cipher systems and machines have not yet been successfully cryptanalyzed. For others, cryptanalytic methods exist, but only for special and advantageous cases, such as when large amounts of ciphertext are available. Starting from the 1990s, local search metaheuristics such as hill climbing, genetic algorithms, and simulated annealing have been employed, and in some cases, successfully, for the cryptanalysis of several classical ciphers. In most cases, however, results were mixed, and the application of such methods rather limited in their scope and performance. In this work, a robust framework and methodology for the cryptanalysis of classical ciphers using local search metaheuristics, mainly hill climbing and simulated annealing, is described. In an extensive set of case studies conducted as part of this research, this new methodology has been validated and demonstrated as highly effective for the cryptanalysis of several challenging cipher systems and machines, which could not be effectively cryptanalyzed before, and with drastic improvements compared to previously published methods. This work also led to the decipherment of original encrypted messages from WWI, and to the solution, for the first time, of several public cryptographic challenges.




Introduction to Modern Cryptography


Book Description

Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors present the core principles of modern cryptography, with emphasis on formal definitions, rigorous proofs of security.




Group Theoretic Cryptography


Book Description

Group theory appears to be a promising source of hard computational problems for deploying new cryptographic constructions. This reference focuses on the specifics of using groups, including in particular non-Abelian groups, in the field of cryptography. It provides an introduction to cryptography with emphasis on the group theoretic perspective, making it one of the first books to use this approach. The authors provide the needed cryptographic and group theoretic concepts, full proofs of essential theorems, and formal security evaluations of the cryptographic schemes presented. They also provide references for further reading and exercises at the end of each chapter.




Algorithmic Number Theory


Book Description

This book constitutes the refereed proceedings of the 9th International Algorithmic Number Theory Symposium, ANTS 2010, held in Nancy, France, in July 2010. The 25 revised full papers presented together with 5 invited papers were carefully reviewed and selected for inclusion in the book. The papers are devoted to algorithmic aspects of number theory, including elementary number theory, algebraic number theory, analytic number theory, geometry of numbers, algebraic geometry, finite fields, and cryptography.




Introduction to Cryptography with Maple


Book Description

This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers.